Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages
Filter by Categories
CBAB 19(4) 2019
Editions
CBAB 19(3) 2019
Uncategorized
CBAB 19(2) 2019
CBAB 19(1) 2019
CBAB 18(4) 2018
CBAB 18(3) 2018
CBAB 18(2) 2018
CBAB 18(1) 2018
CBAB 17(4) 2017
CBAB 17(3) 2017
CBAB 17(2) 2017
CBAB 17(1) 2017
CBAB 16(4) 2016
CBAB 16(3) 2016
CBAB 16(2) 2016
CBAB 16(1) 2016
CBAB 15(4) 2015
CBAB 15(3) 2015
CBAB 15(2) 2015
CBAB 15(1) 2015
CBAB 14(4) 2014
CBAB 14(3) 2014
CBAB 14(2) 2014
CBAB 14(1) 2014
CBAB 13(4) 2013
CBAB 13(3) 2013
CBAB 13(2) 2013
CBAB 13(1) 2013
CBAB 12(S2) 2012 Special Edition
CBAB 12(4) 2012
CBAB 12(3) 2012
CBAB 12(2) 2012
CBAB 12(1) 2012
CBAB 11(S1) 2011 Special Edition
CBAB 11(4) 2011
CBAB 11(3) 2011
CBAB 11(2) 2011
CBAB 11(1) 2011
CBAB 10(4) 2010
CBAB 10(3) 2010
CBAB 10(2) 2010
CBAB 10(1) 2010
CBAB 09(4) 2009
CBAB 09(3) 2009
CBAB 09(2) 2009
CBAB 09(1) 2009
CBAB 08(4) 2008
CBAB 08(3) 2008
CBAB 08(2) 2008
CBAB 08(1) 2008
CBAB 07(4) 2007
CBAB 07(3) 2007
CBAB 07(2) 2007
CBAB 07(1) 2007
CBAB 06(4) 2006
CBAB 06(3) 2006
CBAB 06(2) 2006
CBAB 06(1) 2006
CBAB 05(4) 2005
CBAB 05(3) 2005
CBAB 05(2) 2005
CBAB 05(1) 2005
CBAB 04(4) 2004
CBAB 04(3) 2004
CBAB 04(1) 2004
CBAB 03(4) 2003
CBAB 03(3) 2003
CBAB 03(2) 2003
CBAB 03(1) 2003
CBAB 02(4) 2002
CBAB 02(3) 2002
CBAB 02(2) 2002
CBAB 02(1) 2002
CBAB 01 (4) 2001
CBAB 01 (3) 2001
CBAB 01 (2) 2001
CBAB 01 (1) 2001
CBAB News
+55 31 3612-4490
cbabjournal@gmail.com
Close

Fernando Ferreira, Carlos Alberto Scapim, Carlos Maldonado, Freddy Mora

Studies on genetic diversity and population structure provide basic
information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes.

Get the article here. (PDF)

Add Your Comment

Your email address will not be published. Required fields are marked *