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Abstract: In order to assess the genotype by environment interaction (GE) and 
select genotypes to exploit narrow and broad adaptations, twenty-two spring 
oilseed rape genotypes were subjected to field surveys at five experimental 
sites in the 2015-16 and 2016-17 growing seasons. Plant materials were sown 
in the form of a randomized complete block design with three replicates. The 
additive main effects and multiplicative interaction (AMMI) model was used to 
determine the genotype, environment, and GE effects. The sum of squares (SS) 
for the first three interaction principal components was very close to the SS for 
the GE signal; therefore, AMMI3 was diagnosed as the most accurate model 
to optimize predictive accuracy. Hyola 401 had the highest broad adaptability. 
In total, the chances of increasing yield were 55.80% from broad adaptations, 
26.73% from narrow adaptations with 4 mega-environments, and an additional 
17.47% from narrow adaptations with 5 mega-environments.
Keywords: Broad adaptation, mega-environment, narrow adaptation, yield 
stability.
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INTRODUCTION

Oilseed rape (Brassica napus L.) is an important crop that is grown worldwide 
for oil extraction. In Iran, due to a lack of local production, a considerable portion 
of edible oil needs is met through imports. The Iranian government has recently 
considered oilseed rape as the leading prospect for increasing oil production 
and reducing dependence on imports. Agricultural data show that, in 2017, 
12,8567 t of oilseed rape was harvested in Iran from an area of about 70,444 
ha, for an average mean yield of about 1825 kg ha–1 (FAO 2018). Thus, there 
is a serious need to increase domestic oilseed production. As a result, several 
breeding programs have been designed to increase oilseed rape performance. 
The challenge is that yield is a complex trait that is controlled by several genes and 
is strongly influenced by the environment. Field crops may exhibit significantly 
different performances across different environments, an effect identified as 
the genotype by environment interaction (GE). Consequently, the GE must be 
evaluated prior to releasing newly developed and/or introduced cultivars. The 
goal is to identify genotypes that show both high mean performance and high 
stability (i.e. less fluctuation) in multi-environment trials (MET).

According to Yan et al. (2007), in MET, the yield of each genotype is influenced 
by the effects of the environment (E), genotype (G), and GE. Among these, 
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only the G and GE are significant for evaluating new cultivars. The GE weakens the relationship between phenotype 
and genotype and thus reduces the efficiency of selection (Kebede B and Getahun 2017). In addition, the GE cannot be 
explained independently through the G or E. Therefore, several statistical methods, such as parametric and nonparametric 
approaches, have been developed to analyze the GE across environments (Yan et al. 2007). Among parametric methods, 
the additive main effects and multiplicative interaction (AMMI) is an effective multivariate model that is frequently used 
by plant breeders and agricultural researchers to estimate crop adaptability and stability, as well as to detect mega-
environments (Shahriari et al. 2018). The AMMI model came to the attention of agricultural researchers particularly 
through the publications of Kempton (1984) and Zobel et al. (1988). Since then, AMMI has become a popular statistical 
tool among agricultural researchers for the purposes of understanding the GE and for gaining accuracy in selection if 
stable jenotypes in many crops, such as wheat (Singh et al. 2019),  barley (Kiliç 2014), cassava (Morais et al. 2017), and 
oilseed rape (Marjanović-Jeromela et al. 2011; Zali et al. 2016; Nowosad et al. 2016) genotypes.

AMMI uses principal component analysis (PCA) for visualizing the GE in what is known as a biplot diagram (Sadeghzadeh 
et al. 2018). The method is used to identify genotypes with a high mean yield and considerable adaptability to the 
desired area through analysis of variance (ANOVA) and mega-environment delineation (Gauch 2013; Hongyu et al. 
2014). Literature shows that AMMI analysis of MET data includes four major steps: 1 - analysis of variance, 2 - model 
diagnosis, 3 - mega-environment delineation, and 4 - selection and recommendation (Haider et al. 2017; Siger et al. 
2018; Sousa et al. 2018).

Iran, which has diverse agro-ecological regions, needs to identify cultivars or genotypes suitable for each region and 
increase the area and production of oilseed rape. Therefore, the objective of this study was to evaluate the adaptability 
and stability of the seed yield of 22 oilseed rape genotypes across five different regions of Iran using the AMMI model.

MATERIAL AND METHODS

Plant materials of this study consisted of 22 genotypes of spring oilseed rape (comprised of 21 advanced lines and 
one check variety) that were the object of field surveys at five experimental sites over two growing seasons (2015-16 
and 2016-17), resulting in 10 environments (combinations of locations and years). These 22 genotypes are in fact the 
top genotypes selected from a rapeseed population consisting of 32 genotypes (30 promising lines and two control 
varieties, RGS003 and Delgan), which were subjected to a one-year preliminary experiment in 4 warm regions of Iran. 
Of these 22 genotypes, those with top performance and yield stability will be selected and registered as new cultivars 
in the Variety Release Committee of Iran and will be available to farmers. The codes assigned to each genotype, along 
with corresponding pedigrees, are detailed in Table 1. The locations consisted of Sari, Gorgan, Borazjan, Dezful, and 
Zabol. More information on these locations has been provided in Table 2. The selected locations cover different types 
of weather conditions, including warm and humid, and warm and arid climates (the northern, southern, and western 
parts of Iran). In each environment (location–year combination), plant materials were sown in the form of a randomized 
complete block statistical design, with three replicates. Each genotype was cultivated on a 5 × 1.2 m plot consisting of 
four rows spaced at 30 centimeters. Planting time and crop maintenance stages were based on the local agro-ecological 
conditions at each test location. Fertilization was carried out based on the results of soil analysis. At harvest time, seed 
yield was measured on a plot basis in each test environment and converted to kg ha-1 for statistical analyses. 

The AMMI model was used to determine the G, E, and GE effects. The AMMI model for yield of the i-th genotype 
in the j-th environment is:

Yge = μ + αg + βe + Σnλnδgnδen + ρge [1]

where Yge is the yield of genotype g in environment e; μ is the grand mean; αg is the genotype deviation from the grand 
mean; βe is the environment deviation; λn is the singular value for principal component (PC) n and, correspondingly, λ2

n is 
its eigenvalue; δgn is the eigenvector value for genotype g and component n; δen is the eigenvector value for environment 
e and component n, with both eigenvectors scaled as unit vectors; and ρge is the residual. 

AMMI analysis was performed using AMMISOFT version 1.0, available at <https://scs.cals.cornell.edu/people/
hugh-gauch/>. AMMI1 graph was prepared using Microsoft Excel 2013. Cross validation analysis was performed using 
MATH-MODEL3.0. 
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RESULTS AND DISCUSSION

Analysis of variance
The mean total yield of the genotypes studied ranged from 1953 to 2665 kg ha-1 throughout the environments, with 

an average of 2276 kg ha-1 (Table 1). G15 had the highest mean yield, and G2 had the lowest. The average yield per 
environment ranged from 686 kg ha-1 (G21 in E6) to 3869 kg ha-1 (G22 in E5). Most of the genotypes had maximum yield 
in the E8 and E5 environments, while the lowest average yield of the genotypes was in E2 (Table 1).

In the present study, the responses of oilseed rape genotypes to environmental conditions were investigated by the 
AMMI model based on variations in seed yield. The genotypes included in this study have had considerable yield potential. 
The results of AMMI analysis for seed performance of 22 oilseed rape genotypes studied across ten environments have 
been summarized in Table 3. In the first step, the worthiness of the analysis was assessed. According to Gauch (2013), 
AMMI analysis is likely worthwhile if the sum of squares (SS) for the GE signal (SSGES) is at least as large as that for SSG. 
In the present study, the SSGES (61211676.53) was approximately 1.9 times as large as SSG (32673639.88), indicating that 
AMMI analysis was likely to be worthwhile. In addition, the ANOVA table shows that 57.04% of the SS treatment was due 
to SSE and SSGEN (sum of squares of GE noise), whereas 42.96% was due to SSG and SSGES. The results also indicated 
that 48.11% of the treatment was due to environmental effects, whereas 14.95% belonged to genotypic effects and 
36.94% to the GE effects. Hence, the environment contributed more to the total variation in seed yield than the G and GE.

Marjanović-Jeromela et al. (2011) assessed the genotype by environment interaction for seed yield per plant in 19 
rapeseed cultivars grown in northern Serbia by the AMMI model and found that 72.49% of the total yield variation was 
explained by the environment, 7.71% by differences between genotypes, and 19.09% by the genotype by environment 
interaction. Zali et al. (2016) estimated grain yield stability of six rapeseed genotypes using the AMMI model over 
two consecutive growing seasons and found that the E, GE, and G explained 79.98%, 13.83%, and 6.19% of total yield 

Table 1. Name, code, and type of genotype tested, along with the mean yield of each genotype in each of the environments tested

Name Code Pedigree
Mean seed yield (kg ha-1) Mean

(kg ha-1)E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
SAN34 G1 Sarigol × Zafar 2023 1010 1853 2757 2440 1654 1040 1976 2595 2491 1984
SAN35 G2 Dalgan × Zafar 2471 1028 1388 2580 2208 1242 1585 2760 2190 2075 1953
SAN36 G3 Zafar 1671 1090 1701 2903 2788 1475 1647 2170 2833 1660 1994
SAN37 G4 Dalgan 2354 1236 2090 2524 2205 1358 1792 2647 2193 1643 2004
SAN38 G5 Sarigol 2001 1280 2423 2433 2715 1618 1837 2833 2109 2078 2133
SAN39 G6 Zarfam× L400 2744 1412 2752 2752 2863 1692 1969 1917 2675 3254 2403
SAN40 G7 RGS003 (check) 2326 1407 2491 2773 2131 1929 1675 2871 2724 2396 2273
SAN41 G8 Talaye × Zafar 2963 1095 2111 2480 2183 1692 1652 2571 2287 1607 2064
SAN42 G9 Dalgan ×Zarfam 1765 1252 1984 2056 3048 1787 1809 3480 2232 1795 2121
SAN43 G10 L56 × L300 1605 1917 2354 2487 2579 1814 2474 2833 2077 2368 2251
SAN44 G11 Dalgan × L17 2185 1463 1698 2383 2905 1581 1654 2404 2122 1961 2036
SAN45 G12 L400 × Sarigol 1693 1729 2064 2685 2683 2008 2189 2671 2753 3276 2375
SAN46 G13 L19 × L22 2560 1324 2214 2650 3098 1897 1830 2931 2740 1841 2309
SAN47 G14 L19× L400 3817 1867 2147 2961 3423 2068 2149 2467 2899 2411 2621
SAN48 G15 Hyola 401 2746 2089 2413 2607 2843 2696 2653 3122 3063 2412 2665
SAN49 G16 Aagamax 2974 1482 2750 2424 2666 2185 2845 2964 2979 1955 2522
SAN50 G17 Salsa cl 2002 1476 2656 2128 3120 2004 1989 2952 2188 2965 2348
SAN51 G18 Trapper 2054 1564 2279 2939 3316 2051 1955 2779 2999 2496 2443
SAN52 G19 Solar cl 1951 1856 2202 2563 3347 2247 2435 3626 2245 2930 2540
SAN53 G20 Smilla 2192 1776 2491 1967 3414 1957 2401 2949 2221 2171 2354
SAN54 G21 Makro 1222 1762 1920 2713 3167 686 2352 2111 2862 2149 2094
SAN55 G22 Belinda 2494 1484 2439 2460 3869 3010 2255 3421 2230 2230 2589
Mean 2264 1848 1482 2008 2864 2280 2556 2510 2201 2748 2276
E1-E10: Environments 1 to 10
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variation, respectively. Likewise,  Nowosad et al. (2016) assessed the GE pattern for seed yield in 25 rapeseed cultivars 
grown in five localities of West Poland by the AMMI model and found that 69.82%, 13.67%, and 8.15% of the total yield 
variation was explained by the E, G, and GE effects, respectively. Thus, they also found that rapeseed yield was highly 
influenced by environmental factors.

The results of research by Tadesse et al. (2018) on 17 Brassica carinata advanced genotypes across 6 environments 
showed that environmental effects were responsible for more than 79% of the total variation, while G accounted for 
4.78% and the GE for 15.55%. Marjanović-Jeromela et al. (2011) performed AMMI analysis over an oilseed rape population 
consisting of 19 genotypes and showed that 72.49% of the total variation in seed yield was due to environmental effects, 
while the G accounted for merely 2.65% and the GE for 9.40%. Shahriari et al. (2018) proposed that in MET data, the 
contribution of the G, E, and GE effects to the total variation can be considered as 20%, 70%, and 10%, respectively.

The first six significant principal components accounted for 92.71% of the total variation in the GE. The first PCA 
explained 29.20% of the variation from the GE, while PCA2, PCA3, PCA4, PCA5, and PCA6 accounted for 25.13, 13.38, 
10.59, 9.06, and 5.35%, respectively. The effect of the GE was 2.5 times greater than the effect of genotype (Table 3).

Model diagnosis
Model selection is one of the most important steps in AMMI analysis. As discussed by Gauch (2013), in most published 

papers related to AMMI analysis, no model diagnosis was performed. Instead, AMMI1 was taken as an automatic default, 

Table 2. Description of the experimental sites related to regional testing of the yield of 22 oilseed rape genotypes

Row Site Year Code
Geographical position Altitude

(m) Average rainfall (mm)
Temperature (º C)

Lat (N) Long (E) Min. Max.
1 Borazjan 2015-16 E1 29.214218 51.227538 77 5.20 8.23 40.27

2016-17 E2 15.15 9.48 40.58
2 Dezful 2015-16 E3 32.262709 48.414657 86 24.80 11.88 37.63

2016-17 E4 29.62 10.65 37.65
3 Gorgan 2015-16 E5 36.896291 54.420750 -3 48.44 5.90 32.73

2016-17 E6 32.06 6.60 32.58
4 Sari 2015-16 E7 36.623119 53.134426 0 76.21 7.67 31.71

2016-17 E8 41.10 8.73 31.55
5 Zabol 2015-16 E9 31.019038 61.489223 481 3.25 10.41 38.17

2016-17 E10 1.67 8.32 38.08

Table 3. AMMI ANOVA for seed yield of the 22 oilseed rape genotypes across 10 environments

Source df SS MS % Treatment % GE
Total 659 267991573.41 406664.00
Treatment 219 218563760.74 998008.04***

Genotype 21 32673639.88 1555887.61*** 14.95
Environment 9 105157239.00 11684137.67*** 48.11
GE Interaction 189 80732881.86 427158.11*** 36.94
          PC1 29 23577723.39 813024.94*** 29.20
          PC2 27 20283977.81 751258.44*** 25.12
          PC3 25 10803502.73 432140.11*** 13.38
          PC4 23 8553268.48 371881.24*** 10.59
          PC5 21 7316684.42 348413.54*** 9.06
          PC6 19 4318865.56 227308.71** 5.35
          Residual 45 5878859.49 130641.32 14.41
Error 440 49427812.67 112335.94
Blocks within Env. 20 6047356.36 302367.82***

Pure Error 420 43380456.30 103286.80
GE: Genotype × environment interaction. ** and *** denote significance at the 1 and 0.1% levels. GE total 80,732,881.86. GE noise 19,521,205.34 or 24.18%. GE signal 
61,211,676.53 or 75.82%.
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because convenient two-dimensional graphs can be based on such models. Model diagnosis matters because selection 
of the best AMMI model will increase predictive accuracy.

AMMI comprises a family of models, with AMMI0 (the merely additive model), AMMI1, AMMI2, and so on. Statistical 
significance, agricultural interpretability, and predictive accuracy are the three criteria for model diagnosis. Predictive 
accuracy is the most important of these three criteria (Gauch 2013) and it has mostly been assessed using cross-validation. 
In this method, for each member of the family of AMMI models, the Root Mean Square Prediction Difference (RMSPD) 
between validation data and model estimates is calculated. Subsequently, maximum predictive accuracy will belong to 
that model which has the lowest RMSPD value.

An alternative to cross-validation, which has been used in this study, is to estimate the SS for GES. As proposed by 
Gauch (2013), this method is computationally trivial and yet rather reliable. This method is actually equal to retaining 
as many PCs as needed for the sum of their eigenvalues to approximate the SSGES, namely 61211676.53 As shown 
in Table 3, the SSGE, SSGEN, and SSGES were estimated to be 80,732,881.86, 19,521,205.34 (or 24.18% of SSGE), and 
61,211,676.53 (or 75.82% of SSGE). From Table 3, the cumulative sum of squares (CSS) for the first four PCs (AMMI 
models) are 23,577,723.39, 43,861,701.2, 54,665,203.93, and 63,218,472.41, respectively. Among these models, the CSS 
for PC3 is close to SSGES, and it is better not to add PC4 with its SS of 8,553,268.48. In addition, AMMI3 was superior to 
AMMI4 with regard to the fact that early PCs capture a signal, whereas late PCs capture noise; discarding noise improves 
accuracy and increases repeatability. Hence, the model diagnosis for optimizing predictive accuracy is AMMI3.

It may be imagined that a model lower than AMMI3 (for example AMMI1) would be more appropriate because 
of practical constraints that require few mega-environments. However, it should be noted that the situation of fewer 
mega-environments is justified when more emphasis is placed on the use of broad adaptation. For our dataset, however, 
the SSGES was 1.87 times that for GEN main effects, showing that narrow adaptation was more important. As shown 
in Table 4, AMMI1 leads to the formation of 4 mega-environments, whereas we will have 5 mega-environments with 
AMMI3, which does not different much from the number of AMMI1. Moreover, Table 4 shows a maximum man yield 
of 2972 kg ha-1 called “Ockham’s hill” for yield as a function of the number of mega-environments. In this Table, from 
left to right, accuracy initially increases while mostly signal is captured, and afterward decreases while mostly noise is 
captured, resulting in the formation of “Ockham’s hill”. To the left of Ockham’s hill, models are less accurate because 
they underfit signal. Likewise, models placed on the right side are also less accurate because they overfit noise. As can 
be seen, the maximum yield of 2972 kg ha-1 for AMMI3 was at 5 mega-environments, while fewer mega-environments 
underfit signal and more mega-environments overfit noise. The above results justify the use of AMMI3 for optimizing 
predictive accuracy instead of AMMI4 or AMMI1.

We also performed cross-validation analysis. The results showed that AMMI4 followed by AMMI3 had the lowest 
RMSPDs (data not shown). However, as explained above, AMMI3 was selected with regard to the fact that, in general, it 
is preferable to select the simpler model (i.e., AMMI3 rather than AMMI4) when two successive members of the family 
of models are nearly tied for maximizing predictive accuracy. 

Table 4. Winning genotypes and the consequent numbers of mega-environments for the AMMI family of models for the oilseed 
rape dataset

Genotype Yield PC1
AMMI family of models

0 1 2 3 4 5 6 7 F
G19 2540.3 19.7 3 3 2 2 1 1
G22 2589.2 14.0 2 2 3 3 3 2 2 2
G12 2375.0 6.9 1 1 1
G18 2443.2 1.2 1 1
G15 2664.5 -0.3 10 2 1 1 3 2 3 2
G16 2522.3 -6.4 1 2 1 1
G6 2403.1 -13.2 1 1 1 1 1
G14 2621.0 -21.3 3 3 3 3 2 2 2 2
Mean yield 2519.8 2664.4 2850.4 2965.6 2972.0 2961.0 2913.3 2868.2 2873.6 2862.9

14 other genotypes were not listed as they were not among the winners.
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In general, AMMI1, the model most suitable for mega-
environment delineation, was used to delineate mega-
environments. However, after identifying the winning 
genotype in each of the 10 environments by the AMMI 
model, the most accurate member of this family of models, 
namely AMMI3, was used to estimate the yields of those 
winners.

Mega-environment delineation
Detection of mega-environments is useful in finding 

general patterns that fit most of the data. Mega-environments 
are commonly distinguished by having different genotype 
winners. Table 4 displays the genotype winners and the 
consequent numbers of mega-environments for AMMI 
models from AMMI0 to AMMIF. The top 4 genotypes in 
each of the 10 environments have been listed in Table 5 
based on the three members of the family of AMMI models. 
According to Table 5, AMMI1 had 4 winners (i.e., G19, G22, 
G15, and G14), whereas there were 5 winners according 
to AMMI3. Also, with the AMMIF model, 7 out of the 22 
genotypes won the first rank in at least 1 environment. As 
shown in the two tables above, there was a greater number 
of winner genotypes with higher AMMI models, and this 
implies that a greater number of winner genotypes (and thus a greater number of mega-environments) was associated 
with more complexity in the AMMI model. Therefore, parsimonious models, such as AMMI1, which are commonly 
accompanied with more signal in the GE, should be the best for mega-environment delineation.

Figure 1 displays the mean vs. stability view of the AMMI1 biplot, visualizing mega-environments, as well as their 
winner genotypes. According to Table 5 and Figure 1, four mega-environments were delineated through the AMMI1 model. 
Mega-environment one consisted of E10, E5, and E4, in which G19 was the winner genotype, whereas E2 and E3 formed 
mega-environment two, with G22 as the winner genotype. E2 plus E3 were placed in mega-environment three, which 
had the lowest PC score and was therefore the most stable mega-environment, where G15, the most stable genotype, 
was the winner. The fourth mega-environment consisted of E7, E8, and E1, in which G14 was the winner genotype.

Selection and recommendation
As emphasized by Gauch (2013), selection of the best genotypes should ideally be performed with yield estimates 

Figure 1. The “mean vs. stability” view of the AMMI1 biplot visual-
izing mega-environments and the similarities among genotypes.

Table 5. Winning genotypes based on 3 members of the AMMI family of models for the oilseed rape dataset

Environment Mean PC1
AMMI1 Rank AMMI3 Rank AMMIF Rank

1 2 3 4 1 2 3 4 1 2 3 4
 E10 2747.9 21.2  G19  G22  G15  G20 G14 G6 G21 G18  G14  G18  G3  G7
 E5 2864.1 15.7  G19  G22  G15  G20 G22 G15 G19 G16  G22  G15  G19  G16
 E4 2008.4 11.7  G19  G22  G15  G20 G6 G12 G17 G19  G12  G6  G17  G19
 E3 1481.8 7.0  G22  G19  G15  G16 G19 G15 G18 G22  G15  G10  G14  G19
 E2 1847.8 6.9  G22  G19  G15  G16 G14 G21 G18 G6  G15  G18  G16  G14
 E6 2280.3 5.0  G15  G22  G19  G14 G22 G19 G15 G20  G19  G9  G22  G15
 E9 2200.9 1.7  G15  G22  G14  G19 G15 G22 G19 G14  G6  G16  G17  G7
 E8 2509.8 -16.3  G14  G15  G16  G6 G22 G19 G15 G20  G16  G15  G10  G19
 E7 2555.7 -17.3  G14  G15  G16  G6 G19 G22 G15 G20  G22  G14  G20  G19
 E1 2264.3 -35.7  G14  G6  G16  G15 G14 G16 G8 G15  G14  G16  G8  G15
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in the context of a given mega-environment scheme. Furthermore, plant breeders usually pay attention to broad and 
narrow adaptation for increasing yield. Figure 1 shows that G15 had the highest mean yield, followed by G14, G22, and 
G19. Among these, G15, with an PC1 score near 0, was the most stable genotype. The results summarized in Table 4 
show the most important aspects of adaptability considered by plant breeders for increasing yield, namely: i) broad 
adaptations, ii) narrow adaptations that can be exploited with the AMMI1 model (4 mega-environments), and iii) 
additional narrow adaptations with the AMMI3 model (5 mega-environments). First, the grand mean (2276.10 kg ha-

1), which is practically equal to complete ignorance of both broad and narrow adaptations, was considered as a base. 
Broad adaptability is achieved when all environments are considered as a single mega-environment, which is equal to 
exploiting AMMI0. As shown in Table 4, G15 was the winner with AMMI0. Consequently, this genotype had the highest 
broad adaptability, which gives a yield increase of 2664.4 – 2276.10 = 388.30 kg ha-1. In addition, G19, G22, G15, and 
G14 showed the highest narrow adaptations, with 4 mega-environments delineated by AMMI1. According to Table 4, 
exploiting AMMI1 led to an additional yield increase of 2850.4 – 2664.4 = 186 kg ha-1. Finally, the use of AMMI3 formed 5 
mega-environments, with G22, G19, G6, G15, and G14 as the winner genotypes. Moreover, utilization of AMMI3, which 
maximizes possible average yield, resulted in an additional yield increase of 2972 – 2850.4 = 121.6 kg ha-1. Hence, the 
total yield increase compared to the grand mean (ignorance of both broad and narrow adaptations) was 695.90 kg ha-1. 
Therefore, the opportunities to increase yield were 55.80% from broad adaptations, 26.73% from narrow adaptations 
with 4 mega-environments, and an additional 17.47% from narrow adaptations with five mega-environments. Most of 
the opportunity from narrow adaptations (60.47%) can be achieved with four mega-environments, which was substantial, 
compared to that from broad adaptations.

According to Table 4, AMMIF, which represents the information from the yield-trial experiment, led to a yield increase 
of 586.80 kg ha-1, whereas AMMI3, representing the additional information from statistical analysis, resulted in a further 
yield increase of 102.70 kg ha-1. Therefore, in this study, 85.11% of the yield gain was due to the experiment, and 14.89% 
was due to the analysis. Because of the negligible cost of statistical analysis compared to the cost of a yield trial, AMMI 
analysis provided a very valuable opportunity for adding value to this study.

Agricultural interpretability
Genotypes in Table 4 and environments in Table 5 have been listed in their PC1 order, so those at the top and bottom 

have opposite GE patterns. This means that a genotype at the top of Table 4 had a positive GE with the environment 
at the top of Table 5 and a negative GE with environments at the bottom of Table 5. Therefore, genotype 19 (G19) had 
a positive GE with environments E10 and E5 and a negative GE with environments E1 and E7, while G14 (G14) had a 
positive GE with E1 and E7 and a negative GE with E10 and E5. There was a significant negative correlation between 
PC1 and the amount of rainfall recorded for each environment (-0.767). This result showed that the AMMI1 mega-
environments had an evident agricultural interpretation in terms of rainfall so that mega-environment 4, with negative 
PC1 values, had the highest amount of rainfall, whereas other mega-environments had a much more limited rainfall. 
Correspondingly, Genotype 14 would be more suitable for areas with relatively high rainfall, whereas Genotype 15, 22, 
and 19 would be suitable for areas with moderate to low atmospheric rainfall. Moreover, except for G10, G15, and G16 
(more than 86% of the genotypes), the mean seed yield was significantly and negatively correlated with the minimum 
temperature, showing the importance of this environmental parameter in oilseed rape farming. 

CONCLUSION

In this study, mean seed yield was highly affected by environment, genotype by environment interaction, and 
genotype effects, respectively. Exploiting AMMI analysis resulted in a yield increase of 695.90 kg ha-1 compared to the 
grand mean. Of this amount, the contribution of broad adaptation was 72.86% and narrow adaptation was 27.14%. 
Furthermore, 14.89% of yield gain was due to AMMI analysis providing an opportunity for adding considerable value to 
the research. The AMMI model had high ability for distinguishing and recommending genotypes with narrow and broad 
adaptations. In total, G15 (i.e., Hyola 401) had the highest broad adaptability, recommendable for all environments. 
G22 (i.e., Belinda) was the most suitable genotype for environments E2, E4, and E10; G19 (i.e. Solar cl) for E3 and E5; 
G6 (i.e., Zarfam × L400) for E6; G15 for E9; and G14 (i.e., L19 × L400) for E1, E7, and E8.
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