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Technical nuances of machine learning: 
implementation and validation of supervised 
methods for genomic prediction in plant 
breeding
Alencar Xavier 1*

Abstract: The decision-making process in plant breeding is driven by data. The 
machine learning framework has powerful tools that can extract useful informa-
tion from data. However, there is still a lack of understanding about the underlying 
algorithms of these methods, their strengths, and pitfalls. Machine learning has two 
main branches: supervised and unsupervised learning. In plant breeding, supervised 
learning is used for genomic prediction, where phenotypic traits are modeled as a 
function of molecular markers. The key supervised learning algorithms for genomic 
prediction are linear methods, kernel methods, neural networks, and tree ensembles. 
This manuscript provides an insight into the implementation of these algorithms 
and how cross-validations can be used to compare methods. Examples for genomic 
prediction come from plant breeding.
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INTRODUCTION

Modern plant breeding relies on the ability to identify superior germplasm, 
and machine learning provides the tools to enable data-driven genotype 
selections. A key motivation for using machine learning in plant breeding 
comes from the ever increasing volume of data, which is generated by high-
throughput phenotyping and genotyping (Lin and Lane 2017, Perakakis et al. 
2018), and complemented by rich environmental information from weather 
stations and satellites (Costa-Neto et al. 2021, Shahhosseini et al. 2021). 
More data require a change in the analytical mindset as traditional statistical 
methods may not be suited for large datasets, and novel algorithms might help 
to extract new meaningful patterns from data. Knowing and understanding 
the different types of machine learning methods help breeders to choose the 
right method for a given task, and to parameterize them with their knowledge 
(Zampieri et al. 2019).

Machine learning can be viewed as the combination of numeric optimization 
and statistics (Hastie et al. 2009, Goodfellow et al. 2016). Two main branches 
exist: unsupervised and supervised learning. Unsupervised learning deals with 
associations among features, whereas supervised learning fits a response variable 
(y) as a function of features (X). In genomic prediction, supervised machine 
learning methods train models that use phenotypes of agronomic traits as a 
function of molecular markers, usually single nucleotide polymorphisms (SNP). 
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This manuscript reviews supervised learning methods used for genomic prediction in plant breeding, with focus on both 
implementation and evaluation by cross-validations.

METHODS

The machine learning literature often diverges from the notation utilized in traditional statistics. This section uses 
algebraic notation familiar to plant breeders in order to describe supervised machine learning methods, which can be 
categorized as linear methods, kernel methods, neural networks, and tree ensembles (Izenman 2008, Hastie et al. 2009, 
Shalev-Shwartz and Ben-David 2014, Goodfellow et al. 2016, Deisenroth et al. 2020).

Linear methods
The response variable is modeled as a linear combination of explanatory variables that are called features in the 

machine learning literature. Although these methods are called “linear”, the features may or may not be linear. Linear 
models can be written as

y = Xb + e

where y is an n×1 vector that contains response variables with n observations, X is an n×p design matrix of p feature 
variables, b is a p×1 vector of regression coefficients, and e is an n×1 vector of residuals. In genomic prediction, the 
features are scores at different marker loci and the coefficients are marker effects. Equation systems of linear models 
can be solved efficiently using an iterative procedure called coordinate descent, which marginalizes the model to solve 
one univariate equation at a time. The marginal model for jth element of b can be derived as follows:

y = Xb + e

y = X-jb-j + xjbj + e

y - X-jb-j = xjbj + e

yj = xjbj + e

where yj equals the response variable y adjusted for the effects of features times their coefficients, except for the ones 
at position j of b. This so-called conditioning is based on isolating the jth coefficient from the other coefficients, which is 
achieved by partitioning Xb into the two terms X-jb-j and xjbj.

Linear methods differ by their univariate solution for bj. These methods include least square error (Stigler 1981), least 
absolute error (Geary 1935), ridge regression “RR” (Hoerl and Kennard 1970), least absolute shrinkage and selection 
operator “LASSO” (Tibshirani 1996) and the elastic-net (Zou and Hastie 2005), which were introduced in the years 1722, 
1935, 1970, 1996, and 2005, respectively. A general property of linear methods is that coefficients bj are solved with 
the objective of increasing the model goodness of fit while subjected to a constraint, modeled with a parameter λ. The 
constraint on the coefficients is commonly referred to as “complexity” or “bias”. The various solutions for the regression 
coefficient bj are summarized in Table 1.

The parameter λ controls the balance between the model variance and complexity. Higher values of λ reduce the 
goodness of fit on the training data by reducing the complexity of the model but increase its predictive potential. The 
least squares and least absolute error solutions are not subjected to any constraint, which causes models to overfit if 
the number of parameters surpasses the number of observations. In addition, least absolute error has no analytical 
derivation and multiple solutions have been proposed over time, generally based on estimators that utilize the median 

Table 1. Solutions for coefficient bj for univariate linear systems (yj = xjbj + e) with different methods (Legarra and Misztal 2008, Hastie 
et al. 2009, Xavier et al. 2016)

Least Squares Least Absolute Ridge LASSO Elastic Net

Solution Cov(xj,yj)
Var(xj)  = 

xj' y–j

xj' x–j

Median(xj#yj)
Var(xj)

xj' y–j

xj' x–j + λ
xj' y–j – λ

xj' xj

xj' y–j – λ1

xj' xj + λ2

Minimizes ê'ê Σ|ê| ê'ê + λb̂'b̂ ê'ê + λΣ|b̂| ê'ê + λ1Σ|b̂| + λ2b̂'b̂
Unique solution Yes No Yes No Yes
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(Li and Arce 2004). The λ parameter in ridge regression inflates the denominator and causes a shrinkage of the regression 
coefficients. For LASSO coefficients, λ causes shrinkage by deflating the nominator and removing it from the model 
altogether if λ > |xj'yj|. Elastic-net was proposed as the combination of ridge regression and LASSO solutions.

In ridge regression, coordinate descent can be efficiently computed by Gauss-Seidel (Legarra and Misztal 2008) 
to avoid the explicit conditioning (yj = y – X-jb-j). A Gauss-Seidel algorithm with residual update operates by updating 
coefficient j with subsequent update of residuals:

b̂j
t+1 = x'j e

t̂ + x'j xj b̂
t
j

x'j xj + λ
 

êt+1 = êt – xj (b̂j
t+1 – b̂j

t)

Because the coefficients are solved one at a time, a single linear model can accommodate a combination of methods 
when a subset of coefficients is subjected to one constraint, whereas another set of coefficients is subjected to another 
constraint. A popular example in plant breeding is the mixed model, where fixed effects are solved via (generalized) 
least squares and random effects as ridge regression. Moreover, in models with multiple random terms, each set of 
coefficients is subjected to its own shrinkage parameter λ.

Under traditional machine learning settings, the shrinkage parameter λ is commonly tuned via cross-validation. An 
exception is found for the ridge regression models containing one or multiple λ parameters, where statisticians and 
geneticist infer λ using Bayesian or likelihood methods. Lambda has an analytical solution through variance components 
as λ = σ 2

eσ
 –2

b (Xavier et al. 2016). More details are provided in subsection ‘analytical tuning’.

Kernel methods
A symmetric matrix K, called kernel, is calculated from the features (X) to describe the similarity among observations 

(Signoretto and Suykens 2015). Kernel methods are used in plant breeding for pedigree-based selection, genomic 
prediction, and spatial adjustments. This framework does not allow to store the model and both training and prediction 
data must be available when solving the equations.  Some functions to build kernels are presented in Table 2. Main 
kernel-based methodologies include: kernel ridge regression “KRR” (e.g., GBLUP and Kalman filters), kriging, splines, 
stationary auto-regressive (i.e., AR1 × AR1 ), reproducing kernel Hilbert spaces “RKHS”, support-vector regression “SVR”, 
and reduced ranking kernels, i.e., principal components.

When the kernel is based on linear combinations of the features, i.e., K = XX', it yields the same solution as linear 
methods. Kernel methods provide a convenient way to compute interactions, which is often necessary to parameterize 
epistasis in genomic prediction (Xu 2013), especially when it is not feasible to apply linear methods for pairwise 
combinations of markers. The interaction kernels are computed as KA×B = KA#KB, using the Hadamard product (#, element-
wise multiplication) and the main-effect kernels KA and KB.

The computation of predictions from kernel methods are found through a linear system of equations (Misztal and 
Legarra 2017). A kernel can also be decomposed linearly, either by Cholesky or Eigen decomposition, and solutions of 
the model can be obtained iteratively as with linear methods (de los Campos et al. 2010). Different factorization methods 
for obtaining kernel solutions are summarized in Table 3. The equations are subjected to the parameter of the constraint 
λ presented for linear methods, which is found through cross-validation or estimated from variance components.

Table 2. Computation of kernels (K) as a function of a set of features (X)

Linear Kernel Gaussian Kernel “RBF” Arccosine Kernel

Solution α–1xi'xj exp [ –κ
 

J

Σ
j=1

 (xi – xj)
2] π–1(xi'xi)(xj'xj) sin(θij) + (π – θij) cos(θij)

Parameter α =
 

J

Σ
j=1  

Var(xj) κ is tuned θij = cos–1Corr(xi, xj)

Known for GBLUP, Kalman Filter RKHS, SVR Deep Kernel method
Reference VanRader (2008) González-Camacho et al. (2012) Cuevas et al. (2019)
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Reduction of dimensionality of a kernel is achieved by Eigen decomposition. If the kernel K is decomposed into 
eigenvectors (matrix U) and their respective eigenvalues (diagonal matrix D), one may reconstruct K with a selected 
number of eigenpairs, which are usually sorted by the amount of variance they explain. Pocrnic et al. (2018) suggested 
to use enough eigenpairs to capture 98% of the total variation in the kernel (sum of the eigenvalues), which may increase 
the accuracy of prediction and speed up convergence. Reduction of dimensionality is also used in principal component 
regressions, where a set of eigenvectors, which are extracted from of a given kernel, become features of a linear model.

Inverse kernels (K–1) are referred to as precision matrices. It is often possible to compute the precision matrix, whether 
dense or sparse, without having to build the kernel itself in order to save computing time. A classic example is the 
inverse of the pedigree relationship matrix proposed by Henderson (1975). The AR1×AR1 covariance structure among 
observations, commonly utilized in the spatial adjustment of field experiments in plant breeding, is another example 
where the sparse precision matrix is computed instead of the kernel itself. The construction of sparse precision matrices 
directly from the feature matrix (X) is an active area of research in machine learning (Cai et al. 2011, Liu and Luo 2015). 

Neural networks
Neural networks are generalizations of linear methods that utilize latent spaces (H). Latent spaces are linear combination 

of features (XB) subjected to a non-linear transformation called an activation function (α), thus H = α(XB). Each latent 
variable, corresponding to a column of H, is called a node. Latent spaces can be used to predict response variables 
(y = Hb + e) or can be transformed into more complex latent spaces, Hi+1 = α(HiB), which creates “hidden layers” in the 
network (Shalev-Shwartz and Ben-David 2014, Goodfellow et al. 2016). More layers increase the complexity and non-
linearity of the latent spaces. Networks with two or more hidden layers are referred to as deep neural network (DNN). A 
neural network with a single layer and linear activation function, i.e., α(x) = x, is analogous to a principal component regression 
(PCR), where the number of nodes corresponds to the number of eigenvectors obtained via single-value decomposition. 
With the implementation of hidden layers, a progression is drawn from a linear method to a DNN as follows:

 y = Xb + e Linear method
 y = (XB1)b2 + e Principal components regression
 y = α(XB1)b2 + e Neural network
 y = α(α(XB1)B2) b3 + e Deep neural network

There is no known analytical solution for the joint estimation of regression coefficients across layers. The regression 
coefficients in the neural network (B1, B2, b3) are estimated using an iterative procedure called gradient descent. Gradient 
descent, although not regarded as a good algorithm for solving systems of equations, is the preferred methodology for 
deep networks due to computational simplicity, that is, it only requires one matrix multiplication. In a linear system of 
equations (y = Xb + e), gradient descent solves for regression coefficients as follows:

b ̂t+1 = b ̂t – r

b ̂t+1 = b ̂t – r [–2n–1X'(y – Xb ̂t) + 2n–1λb ̂t]

b ̂t+1 = b ̂t – r (–2n–1X'ê + 2n–1λb ̂t)

b ̂t+1 = b ̂t + 2n–1X'e ̂– 2n–1λb ̂t

b ̂t+1 = b ̂t +2n–1r(X'e ̂– λb ̂t)

where r is the learning rate or step-size, n is the number of observations,  is the gradient obtained from the first 
derivative of the ridge function: ê'ê + λb ̂'b ̂. The vector ê corresponds to the residuals (ê = y – Xb ̂) and λ is the constraint 

Table 3. Solving kernel linear systems y = g + e, where g = K(X) (Stranden and Garrick 2009, de los Campos et al. 2010, Signoretto 
and Suykens 2015)

Factorization None Inverse Eigen Cholesky
Transformation f(K) = K f(K) = K–1 f(K) = UDU' f(K) = LL'
Solution (K + λI)g = Ky (I + λK–1)g = y (I + λD–1)g = U'y (L'L + Iλ)g = L'y
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utilized for the case of ridge regression. The learning rate controls the convergence rate of the network. The residuals 
must be back-propagated to the inner layers to solve coefficients within the latent spaces. Neural networks use random 
values as starting point for the regression coefficients to enable the propagation of residuals in the first iteration. Fitting 
a DNN involves three steps:

1. Fit neural network

 a. H1 = α(XB1)

 b. H2 = α(H1B2)

 c. y ̂ = H2b3

2. Compute gradient

 a. e3 = y – y ̂

 b. E2 = α(e3B'3)

 c. E1 = α(E2B'2)

3. Update coefficients

a. b1
t+1 = b1

t  + 2r1n
–1r(X'E1 – λ1b1

t )

b. b2
t+1 = b2

t  + 2r2n
–1r(H'1E2 – λ2b2

t )

c. b3
t+1 = b3

t  + 2r3n
–1r(H'2e3 – λ3b3

t )

The intercepts have been omitted for simplicity. Otherwise an additional column filled with 1’s is added to the 
feature matrices (X, H1 and H2), which is not subjected to a constraint (λ = 0). Learning rates (r1,r2,r3) may vary across 
parameters and change with increasing iterations. A few algorithms have become the gold standard to track and update 
rates, which are the adaptive momentum “Adam” (Kingma and Adam 2014) and the root mean square propagation 
“RMSProp” (Xu et al. 2021). Optimizing learning rates may increase the computational cost of fitting networks because it 
involves storing gradients from previous iterations, but this computational cost is offset by faster convergence. For large 
datasets, coefficients are solved using stochastic gradient descent (SGC). In each iteration of SGD, a small subset of the 
data, known as “batch”, is randomly sampled and used to update the coefficients. The batch size limits the amount of 
data utilized in each iteration, which can considerably reduce the computation time involved in updating the regression 
coefficients (Takase 2021). To determine convergence, it is useful to prepare a “test set” to assess the prediction power 
of the network after each iteration.

The activation functions (α) used for element-wise transformation of latent spaces is a key parameter in DNNs. 
Hyperbolic tangent function (Tanh) and Rectifier Linear Unit (ReLU) are the two most commonly used transformations 
in genomic prediction (Montesinos-López et al. 2021). Activation functions must be easy to compute, because they 
are used to fit the network and propagate the residuals. Tanh is a non-linear function that transforms the input values, 
estimated from the linear combinations of features, into values ranging from -1 to 1. Any value below -2 or above 
2 is set to -1 or 1 by Tanh, respectively, hence Tanh is sensitive to the scale of the inputs and may benefit from the 
normalization of the response variables. ReLU sets negative values to zero without altering positive values. The “leaky” 
version of ReLU shrinks negative values by a pre-defined constant, δ, instead of eliminating them altogether, thus: 
α(x,δ) = x (if x > 0), otherwise x = δx. The ReLU activation function is believed to provide universal approximation for any 
polynomial function as the number of nodes increase (Hanin 2019). Prediction from DNN based on the ReLU activation 
can benefit from a procedure called dropout (Baldi 2014), which refers to ignoring a proportion of nodes, chosen at 
random in each iteration, to mitigate codependency of latent spaces (Hahn and Choi 2020).

Tree ensembles
Models based on regression trees (Breiman et al. 1984) are algorithmic-driven and do not involve explicit algebra. 

Regression trees are weak learners and benefit from ensembles, which refers to the process of averaging multiple trees 
through sampling techniques, such as bagging and boosting. Hierarchically, the implementation of tree ensembles is 
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based on three components: 1) Recursive partitioning; 2) Tree building; 3) Ensemble method.

1) Recursive partitioning: Defines the breakdown of a single feature (x) that best separates the response variable (y) 
into two groups, called nodes, based on some metric to be minimized. The squared error is the most common metric 
for modeling continuous variables. The main algorithm utilized to find partitioning threshold is named Classification 
and Regression Tree Algorithm (CART). In genomic prediction, there are only two possible splitting points for  when 
recursive partitioning is applied to a diploid SNP marker (x) with genotypes numerically coded as 012: “x ≤ 1” or “x < 1”, 
representing (AA,Aa)/(aa) and (AA)/(Aa,aa), respectively. The same marker may provide further partitioning of the data 
in the node containing two classes. The output of the recursive partitioning function must include (1) the split point 
that minimizes the square error and (2) the amount of variance explained. Both information will be used to build trees.

2) Tree building: Trees are built from sequentially through recursive splits. Given the set of the features (X), a tree is 
built by checking which of the features offers the highest reduction in squared error by recursive partitioning. This will 
define which feature, and where, the first split of the tree occurs. The data is split into the two node and all features in 
X are reassessed within node to generate the second split rule. The process is repeated within subsequent node until 
no further reduction in squared error is achieved. The complexity of the regression trees controlled by (1) limiting tree 
depth, (2) limiting the number of observations per node, and (3) by the defining a minimum reduction of squared error 
that justify partitioning.

3) Ensemble method: The ensemble of multiple trees is done in one of two ways: bagging and boosting. Bagging 
trees yield a model known as random forest (Breiman 2001), whereas boosting trees yield as model referred to as 
gradient boosting machine “GBM” (Friedman 2001), with variations known as AdaBoost (Freund and Schapire 1997) 
and XGBoost (Chen and Guestrin 2016).

Bagging consists of creating a predefined number of trees (e.g., M = 500), where each tree Tm fits a subset of individuals 
yncN as a function of a subset of features XncN,pcP. The final random forest prediction is the average across trees calculated 
as y ̂ = M–1 ∑M

m=1 Tm(X). Features utilized in each tree are sampled at random from a fraction of all features available (e.g., 
P  ). Random forest has been used in genomic prediction and genome-wide association analysis (Schwarz et al. 2010, 

Chen and Ishwaran 2012, Botta et al. 2014, Wright and Ziegler 2015, Xavier and Rainey 2020).

Boosting consists of fitting regression trees sequentially to improve fitness. Boosting starts with fitting a regression 
tree T1 using a random set of the observations (y1), sampled from the data (y1 c y) and model it as a function of the 
corresponding features X1. Next, a second set of observations (y2) is sampled and the vector of gradients, computed as 
e2 = y2 – T1 (X2), serves as response variable to fit T2 as a function of X2. Likewise, subsequent trees Tm+1 fit from random 
samples of observations, ym+1, with gradients estimated from the current set of trees, em+1 = ∑M

m=1 T(Xm+1). Thus, the third 
tree, T3, fits the gradients e3, estimated as e3 = y3 – T1(X3) – T2(X3), as a function of X3. The final boosting prediction is the 
sum from all trees as y ̂ = ∑M

m=1 Tm(X).

Both ensemble methods are controlled by multiple parameters at both the tree and ensemble level to control the 
complexity of the model. Due to the large number of correlated features, genomic prediction models from tree ensembles 
can provide more stable solutions as the number trees increases and the depth of the trees decreases.

Analytical tuning
The parameter λ that controls the shrinkage of both ridge regression and kernel ridge regression has an analytical 

solution based on variance components (λ = σ2
eσ

-2
u) and, therefore, does not require cross-validation for tuning. Most 

genetic analyses infer variance components instead of tuning based on cross-validation, because they are used to 
estimate heritability. A common likelihood function used for variance components, for both ridge regression and kernel 
methods, is Restricted Maximum Likelihood “REML” (Corbeil and Searle 1976).

REML is used to for linear models of the form y = Xb + Zu + e, where the response variable (y) is modeled as a function 
of features and their effects that are solved via least squares (fixed effects, Xb) and ridge regression (random effects, 
Zu). The regression coefficients u and residuals e are assumed to follow a normal distribution, described as u~N(0,Kσ2

u) 
and e~N(0,Rσ2

e), respectively. The model assumes that the response variable is normally distribute as y~N(Xb, V), where 
the variance-covariance matrix is defined as V =ZKZ'σ2

u + Rσ2
e. The matrix R is the residual correlation kernel, usually set 
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as R = I; matrices X and Z are design matrices of b and u, respectively, K is the kernel matrix of the random term. REML 
is a convex function with unique solutions for variance components, but it is considerably more complex to optimize 
than simpler functions such as the mean squared error. The expectation of variance components based on the first 
derivative is (Searle et al. 2009):

σ2
i = yPViPy

tr(PVi)
 

where, P is the projection matrix, P = V–1 – V–1X(X'V–1X)–1X'V–1. The matrix Vi corresponds to the first derivative of V with 
respect to the ith variance component, such that ∂V/∂σ2

e = R and ∂V/∂σ2
u = ZKZ'. Alternatives to REML variance components 

that may provide lower computational cost include Bayesian methods (Sorensen and Gianola 2007, Rue et al. 2017) and 
likelihood approximations (Schaeffer 1986, Vanraden and Jung 1988).

CROSS-VALIDATION

Collecting new data is costly, therefore prediction models are usually evaluated with data at hand. Data can be split into 
two subsets, one is used for training, and the other one is used for testing. This procedure is called cross-validation (CV).

Cross-validation schemes:

The main types of cross-validation schemes used in plant breeding are: Random K-fold, leave-one-out (LOO), and 
holdout, where each cross-validation scheme serves a different purpose.

1) Random K-fold. In this scheme, a fraction of 1/k of the dataset is sampled for testing, and the prediction metric 
is averaged across samples. Random k-fold validation is broadly used for comparing methods as it gives a sense for 
the prediction on new individuals for an observed set of environments. The exact interpretation may vary according 
to the population structure of the dataset. In genomic prediction, random k-fold provides a general assessment of the 
predictive potential of the model.

2) Leave-one-out. This scheme is useful to assess data with known structure, including the prediction of unobserved 
populations (i.e. leave-population-out) and genotype-by-environment interactions (i.e. leave-location-out, leave-
geography-out). The interpretation of the result relies on which set of observations are being left out. LOO can mitigate 
contamination of data structure that random data splits do not consider. In the context of cross-validation, contamination 
refers to observations shared in both training and validation set (Runcie and Chang 2019).

3) Holdout. This scheme aims to replicate the true application of the prediction model. A common example is to 
train the model with data from previous growing seasons for predicting environments and selection candidates of the 
most recent growing season. These selection candidates come from new breeding crosses with linkage disequilibrium 
patterns that are usually present in the training dataset (Pszczola and Calus 2016).

Validation metrics

Key metrics for assessing the machine learning models in plant breeding are: Correlation, prediction error, and success.

1) Correlation. It is measured by Pearson or Spearman coefficients between observed and predicted values. The 
Pearson correlation coefficient is a metric that captures differences in both ranking and magnitude. Pearson correlations 
also referred here to as predictability, can be re-scaled into accuracy by dividing it by the squared root of the heritability 
(Lehermeier et al. 2013). Spearman’s coefficient, or rank-order correlation, is the main alternative to the Pearson’s 
coefficient. It does not capture magnitude, but it is a direct measure of ranking. In genomic prediction, the Spearman 
correlation is used to measure the overall alignment of two selection methods (Heslot et al. 2012).

2) Prediction error. Generally measured as the mean squared prediction error (MSPE), is not commonly applied in 
plant breeding for selection purposes, but it suits models of disease risk, probabilities of events, and other predictions 
where any shrinkage on prediction values is detrimental. Prediction error is the preferred metric to tune parameters 
of neural networks and tree-based machines using cross-validation, which is nested within the training set. Under the 
framework of linear models, prediction error can be computed analytically from the hat matrix, without explicit need 
for cross-validation (Xu 2017).
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3) Success. Success is for models where decisions follow clear rules that characterize success. At the observation 
level, success is a Bernoulli process that corresponds to whether predefined criteria were achieved. Selection itself is an 
example of a measure of success, as genotypes are either selected or not. At the population level, success is a Binomial 
process as it measures the number of successes within a constrained number of attempts. When there are various classes 
of success, accuracy is measured from a confusion matrix (i.e., predicted vs. observed classes), as the percentage of 
correctly classified observations. Conversely, a metric such as the Jaccard score suits success when it is defined as the 
product of multiple independent criteria: it defines 1 if all criteria are met, and 0 otherwise. When only two decisions are 
possible, both accuracy and Jaccard score converge to the same metric. For example, selection accuracy that is defined 
as the intersection between the predicted top X% and observed top X% (Qiao et al 2000).

By adequate choice of both scheme and metric in a cross-validation, it can be tailored to the specific application. 
Guidelines to benchmark genomic prediction methods targeting additive genetics were formalized by Daetwyler et al. 
(2013). The prediction scenarios were summarized by Crossa et al. (2017) into four types based on their application to 
plant breeding: Untested genotypes and unobserved environments (CV00), tested genotypes in unobserved environments 
(CV0), untested genotypes in observed environments (CV1), and tested genotypes in observed environments (CV2).

Information
Cross-validation studies also provide an insight into population stratification, because validations are performed within 

and across sub-populations. Werner et al. (2020) presents pitfalls and discrepancies in predictability when validations 
are performed across-families or are nested within-family. When factors that define population structure are known, 
such as family or sub-population structure, cross-validations enable studying predictability on multiple levels (Xavier and 
Rainey 2020). The theory surrounding the information captured by molecular markers was formalized by Habier et al. 
(2013), and the expected genetic information captured under different validation scenarios can be summarized as follows:

Single-family: Linkage.

Within-family: Linkage and LD.

Across-family: Pedigree relationships, Linkage and LD.

Leave-family-out: Pedigree relationships and LD.

The three sources of information are summarized as follows: Pedigree relationship refers to population structure; 
linkage disequilibrium (LD) means associations between markers and QTL as measured across unrelated founder 
individuals; and Linkage, or co-segregation, captures inheritance of parental haplotypes.

There are practical implications that have been derived from understanding the sources of genomic information. 
For example, validation structure information postulates that within-family predictions must yield lower predictability 
than across-families, because within-family predictions do not benefit from pedigree relationships (Legarra et al. 2008). 
In the machine learning literature, the discrepancy in accuracy reported across-populations and within-populations is 
referred to as the Simpson paradox (Fabris and Freitas 2000). The various prediction models are likely to differ with 
regards to how well they capture the different sources of information. In addition, the nature of the information can 
change according to the parameterization. Molecular markers can be informative of additive, dominance, and epistasic 
effects. It was noted by Pérez-Rodríguez et al. (2012) and Howard et al. (2014) that non-parametric methods may be 
able to capture non-additive effects, i.e., dominance and epistasis, even when the markers are not explicitly coded to 
capture these types of variation. Conversely, in scenarios where the genetic architecture is predominantly additive, 
semi-parametric methods (e.g., DNN, RKHS, SVR) may fail to provide an improvement in accuracy over simpler linear 
methods (Montesinos-López et al. 2021).

Case of study
Different types of cross-validations are illustrated in Figure 1. The validation set was split into tested and untested 

environments to provide an insight into the non-predictable component of genotype-by-environment interactions. Cross-
validation was performed on soybean yield from the SoyNAM dataset, which contains 40 families, 5349 individuals, and 
4408 SNPs. Model were trained with data collected in 2012 and validated on data collected in 2012 (tested environment) 
and 2013 (untested environment), using individual not included in the training set.
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The genomic prediction models were REML-based ridge regression (BLUP), fast Laplace model ‘FLM’ (Xavier 2019), 
reproducing kernel Hilbert spaces ‘RKHS’ (de los Campos et al. 2010), BayesB (Meuwissen et al. 2001), random forest 
regression (RFR), extreme gradient boosting machine (XGB), and a two hidden-layers deep neural network (DNN). Data 
is available in the R package SoyNAM (Xavier et al. 2021) and the models are implemented in the R packages bWGR 
(Xavier et al. 2019), BGLR (Pérez and de los Campos 2014), ranger (Wright and Ziegler 2015), xgboost (Chen and Guestrin 
2016) and keras (Arnold 2017). Validations for single-family, within-family, and across-family were performed as 5-fold 
random cross validation that was repeated 20 times. Results illustrate that the across-family predictability, as the Pearson 
correlations between predicted and observed values, is considerably higher than predictability within-family across all 
methods, because the pedigree relationships among parents is captured (Wientjes et al. 2015). Within-family predictions 
are more accurate than predictions within a single-family, because the former captures linkage disequilibrium in addition 
to linkage. In all scenarios, predictability is lower when validations are performed over untested environments.

CONCLUSIONS

Plant breeding can benefit greatly from data-driven solutions that identify and select superior germplasm through 
machine learning, especially with the ever-increasing amount of phenotypic and genotypic data collected with high-
throughput technologies. This manuscript provides an overview of the implementation of major supervised machine 
learning algorithms. The prediction models are explored using various cross-validation approaches, which can be designed 
to be informative of the strengths and weakness of different models.

Figure 1. Four cross-validation schemes illustrating predictability of various methods utilized for genomic prediction. Grain yield 
models from the SoyNAM population, validated upon unobserved individuals from tested and untested environments.
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