

# CULTIVAR RELEASE

# NIA-Shaheen (CIM-04-10): A high-yielding, drought-tolerant wheat variety

# Saima Mir Arain<sup>1\*</sup>, Mahboob Ali Sial<sup>1</sup>, Khalil Ahmed Leghari<sup>1</sup>, Muhammad Faheem<sup>1</sup> and Karim Dino Jamali<sup>1</sup>

**Abstract:** The wheat variety NIA-Shaheen (CIM-04-10) has high grain yield and modern plant architecture. It has wide adaptability, increased tiller production, bold grains, high starch and protein content, and good tolerance to disease and environmental stresses, particularly water stress. NIA-Shaheen has high yield potential (7184 kg ha<sup>-1</sup>).

Keywords: Bread wheat, disease resistance, environmental stresses, grain yield.

## INTRODUCTION

Wheat (*Triticumaestivum* L.) is the second most important cereal crop in the world, with production of 762 million tons per year (FAO 2020). It accounts for 30% of grain production and 45% of cereal-based nutrition, thus establishing it as a major food crop globally. According to a United Nations report, world population is projected to increase to almost 10 billion by 2050 (UN 2015). In the face of the rising global population, wheat production and yield improvement have become crucial. Food production in developing countries must increase 70-110% by 2050. The problem of food security is exacerbated by prevailing climatic changes. These changes contribute to higher mean temperatures, increasing water short ages (Sehgal et al. 2018); there may be a 55% increase in water requirements by 2050, from 3500 to 5425 km<sup>3</sup> worldwide (Islam and Karim 2018). In wheat, water stress, especially during the reproductive stage, decreases the quantity of grain (Dong et al. 2017). Water stress alone can reduce wheat grain yield, with estimated average yield decreasing from 17% to 70% (Nouri-Ganbalani et al. 2009).

Generally, multiple stresses occur in the field in a collective manner. It has thus become indispensable to develop crop cultivars well equipped with tolerance to multiple stress factors to mitigate the constraints of climatic changes and to meet the nutritional demands of the human population (He et al. 2018). In addition, diseases such as leaf rust (*Puccinia recondite*) and stripe/yellow rust (*Puccinia striiformis*) are among the factors destructive to wheat. Such pathogens can attack diverse grass species and result in yield losses of up to 60% in leaf or stripe rust, and 100% in stem rust (Arain et al. 2017). Changing climates create new races of pathogens, and resistant varieties become susceptible. Hence, the release of new, more promising, stress-tolerant varieties is key for improvement of genetic gains (Benin et al. 2020). NIA-Shaheen meets the requirements for release of a new variety, with high yield, stability, better quality, resistance to diseases, and tolerance to stresses (Federizzi et al. 2012).

Crop Breeding and Applied Biotechnology 21(2): e365621210, 2021 Brazilian Society of Plant Breeding. Printed in Brazil http://dx.doi.org/10.1590/1984-70332021v21n2c39

> \*Corresponding author: E-mail: saimamir\_nia@yahoo.com D ORCID: 0000-0002-6202-2569

> > Received: 09 February 2021 Accepted: 19 April 2021 Published: 20 June 2021

<sup>1</sup> Nuclear Institute of Agriculture (NIA), Tando Jam, PO Box 70060, Pakistan To that end, the NIA-Shaheen wheat variety developed by NIA, Tando Jam, has been presented for cultivation in normal and late sowing systems of the Sindh province in Pakistan. The cultivar was initially selected from exotic germplasm received from CIMMYT in the year 2003-04 and evaluated in different trials with competing genotypes. It has tolerance to diseases, resistance to lodging, bold grain, high grain yield, and superior quality. Weather events such as wind and rain storms can result in lodging that can cause up to 80% yield loss (Feng et al. 2019). In national trials, the variety was ranked in first place in Sindh province and third across Pakistan. The variety has good performance under water deficit conditions. The name NIA-Shaheen was based on the name of the development institute (NIA) and the term "Shaheen" (meaning majestic).

The Tando Jam wheat breeding program of the Nuclear Institute of Agriculture (NIA) has been actively working to develop new improved varieties using conventional (hybridization and mutation) breeding methods. So far, NIA has developed 15 wheat cultivars with diverse valuable traits, including tolerance to abiotic and biotic stresses such as drought, salinity, and rust diseases. 'NIA-Shaheen' is an excellent choice for wheat growers/farmers of the Sindh province, due to its wide adaptability to this environment. It is well equipped with adesirable combination of traits to assume the local challenges of increasing population and food demands by producing high yields and showing resistance against biotic and abiotic stresses, especially water stress.

## **BREEDING METHODS AND DEVELOPMENTAL HISTORY**

NIA-Shaheen, previously coded as CIM-04-10, with pedigree/parentage PBW 343\*2/KONK, is a conventionally bred wheat variety introduced by the Nuclear Institute of Agriculture (NIA), Tando Jam. It was selected from exotic germplasm ( $F_2$ ) received from CIMMYT, Mexico, in the 2003-04 crop year (Figure 1). The line was tested in preliminary yield trials along with 13 other advanced lines and two checks, 'Sarsabz' and 'Kiran-95', in 2007-08 (Table 1). 'NIA-Shaheen' was tested in an advanced strain yield trial (AST) along with the 14 competing entries and two checks, *viz.*, 'Sarsabz' and 'Kiran-95', in 2009-10 (Table 2). 'NIA-Shaheen' and fourteen advanced lines were further tested in multi-location adaptive yield trials, along with three check varieties, viz., Sarsabz, TD-I, and TJ-83, conducted in five major wheat-producing districts of Sindh province for two consecutive crop years (2011-2013), as shown in Table 3. Additionally, NIA-Shaheen was tested for different agronomic trials, the line was tested on different sowing dates and at different row spacings,



Figure 1. Schematic presentation of the developmental history of 'NIA-Shaheen'.

seeding rates, and irrigation levels to optimize the irrigation provided to study the effects of drought on final yield potential. Each agronomic trial was sown in a 9-m<sup>2</sup> plotconsisting of six 5-m length rows using a RCB design with three replicates. Based onitshigh grain yield potential, the CIM-04-10 line was promoted to the national uniform wheat yield trials (NUWYT), where it was tested along with 39 candidate wheat lines for two consecutive years (2013-14 to 2014-15). Parallel to testing for the yield potential and suitability of the line under different climatic conditions, 'NIA-Shaheen' was also screened for different wheat diseases, specifically for rust resistance in hotspot areas of Pakistan under the national wheat disease screening nursery (NWDSN) by the Crop Disease Research Institute (CDRI) in Islamabad, Pakistan. Extensive yield trials were conducted in farmers' fields in 2015-16. The proposal of the candidate line CIM-04-10 was presented

| S/No. | Genotype   | DH      | PH       | SL     | SPS     | GPS     | MSY     | GS      | GY      |
|-------|------------|---------|----------|--------|---------|---------|---------|---------|---------|
| 1     | CIM-04-9   | 74.3f   | 106.0de  | 12.4b  | 21.4ab  | 68.5a   | 3.17ab  | 3.20b-e | 4167ab  |
| 2     | CIM-04-101 | 75.3ef  | 108.8cd  | 12.6ab | 21.7a   | 67.9a   | 3.38a   | 3.69a   | 4515a   |
| 3     | CIM-04-11  | 75.3ef  | 107.5cd  | 11.4c  | 20.7a-d | 60.7c-f | 2.83b-e | 2.93fg  | 3715bc  |
| 4     | CIM-04-14  | 78.3bcd | 99.9g    | 11.4c  | 19.6f   | 59.3ef  | 2.67de  | 3.02efg | 4515a   |
| 5     | CIM-04-16  | 75.7ef  | 109.0cd  | 12.4b  | 21.1abc | 67.7abc | 3.07abc | 3.21b-e | 3681bc  |
| 6     | CIM-04-17  | 75.3ef  | 104.4e   | 12.3b  | 20.7bcd | 67.0ab  | 3.08abc | 3.24b-e | 4015ab  |
| 7     | CIM-04-18  | 77.0de  | 107.9cd  | 11.7c  | 19.7ef  | 66.5abc | 3.05bc  | 3.39b   | 2640def |
| 8     | CIM-04-19  | 80.0ab  | 117.2a   | 12.9ab | 21.1abc | 66.6a   | 2.96bcd | 3.30bc  | 2917def |
| 9     | CIM-04-20  | 79.7abc | 112.9b   | 12.6ab | 18.4g   | 64.5a-e | 2.89b-e | 3.18b-e | 3298cd  |
| 10    | CIM-03-4   | 79.3bc  | 100.0g   | 11.5c  | 20.3c-f | 65.6a-d | 3.01bcd | 3.03d-g | 3194cde |
| 11    | CIM-03-6   | 78.0cd  | 102.9efg | 11.2c  | 21.4ab  | 67.2ab  | 2.92b-e | 3.14c-f | 2985de  |
| 12    | CIM-03-9   | 81.3a   | 1.29efg  | 11.6c  | 20.6b-e | 61.9c-f | 3.03bc  | 3.01efg | 3785bc  |
| 13    | CIM-03-17  | 78.3bcd | 110.3bc  | 12.4b  | 20.6b-e | 58.4f   | 2.60e   | 2.83g   | 4027ab  |
| 14    | CIM-03-19  | 79.0bc  | 112.5b   | 12.5b  | 21.1abc | 59.9def | 2.78cde | 2.84g   | 3125cde |
| 15    | Sarsabz    | 70.7g   | 103.9ef  | 12.3b  | 20.0def | 65.1a-d | 2.79cde | 3.26bcd | 2569ef  |
| 16    | Kiran-95   | 75.0f   | 101.2fg  | 13.1a  | 20.3c-f | 65.1a-d | 3.14ab  | 3.21b-e | 2256f   |

Table 1. Performance of 'NIA-Shaheen' in preliminary yield trials

Note: Means followed by different letters within a column for each trait have significant differences at the level of the LSD test (P<.05). S/No: Serial number; DH: days to heading; PH: plant height (cm); SL: spike length (cm); SPS: spikelets per spike; GPS: grains per spike; MSY: main spike yield (g); GS: grain per spikelets; GY: grain yield (kg ha<sup>-1</sup>). Genotypes 15 ('Sarsabz') and 16 ('Kiran-95') are commercial checks. <sup>1</sup> NIA-Shaheen was previously coded as CIM-04-10.

Table 2. Comparative performance of wheat genotypes in Advanced Strain Yield Trials

| S/No. | Genotype   | DH      | PH     | SL      | SPS      | GPS     | MSY     | TSW      | GY      |
|-------|------------|---------|--------|---------|----------|---------|---------|----------|---------|
| 1     | CIM-04-9   | 75.0g   | 98f    | 11.4e-h | 18.7b    | 56.4abc | 2.25cd  | 39.31ef  | 5239fgh |
| 2     | CIM-04-101 | 75.0fg  | 101cde | 12.2a   | 18.7b    | 61.5a   | 2.84a   | 48.06a   | 6429a   |
| 3     | CIM-04-11  | 76.3ef  | 99 ef  | 11.9a-d | 19.7a    | 54.3bc  | 2.73ab  | 46.69a   | 5731cde |
| 4     | CIM-04-14  | 75.0fg  | 92g    | 11.3fgh | 18.5bc   | 51.5c   | 2.40a-d | 44.73abc | 6209ab  |
| 5     | CIM-04-16  | 74.3g   | 99ef   | 12.1ab  | 18.7b    | 53.0bc  | 2.21cd  | 40.30def | 5764cd  |
| 6     | CIM-04-17  | 75.7efg | 103bc  | 11.2gh  | 18.1bcd  | 57.7abc | 2.44a-d | 39.66ef  | 5951bc  |
| 7     | CIM-04-18  | 75.7efg | 101cd  | 10.6i   | 17.5de   | 52.2bc  | 2.17cd  | 39.39ef  | 5491d-g |
| 8     | CIM-04-19  | 80.3a   | 103b   | 11.5efg | 18.3bc   | 52.7bc  | 2.31bcd | 40.36def | 5217fgh |
| 9     | CIM-04-20  | 80.0ab  | 103b   | 11.7b-e | 17.0 e   | 57.2abc | 2.6abc  | 41.45cde | 5271fgh |
| 10    | CIM-03-4   | 78.0cd  | 100def | 10.5i   | 18.0 bcd | 56.9abc | 2.74ab  | 46.00ab  | 5418e-h |
| 11    | CIM-03-6   | 77.0de  | 101cd  | 10.6i   | 18.2bcd  | 58.6ab  | 2.03d   | 36.21f   | 5541def |
| 12    | CIM-03-9   | 80.3a   | 101cd  | 11.1h   | 17.8cd   | 57.2abc | 2.24cd  | 38.39 ef | 5292fgh |
| 13    | CIM-03-17  | 80.0ab  | 104b   | 12.0abc | 18.8b    | 54.7bc  | 2.13cd  | 38.97 ef | 5115h   |
| 14    | CIM-03-19  | 78.7bc  | 108a   | 11.7c-f | 18.2bcd  | 56.6abc | 2.53abc | 44.29a-d | 5184gh  |
| 15    | Sarsabz    | 63.3i   | 108a   | 11.6def | 17.5de   | 51.3c   | 2.32bcd | 43.97a-d | 5383fgh |
| 16    | Kiran-95   | 72.3h   | 103b   | 11.3fgh | 18.0 bcd | 57.5abc | 2.51abc | 42.22b-e | 5485d-g |

Note: Means followed by different letters within a column for each trait have significant differences at the level of the LSD test, P<.05. S/No: Serial number; DH: days to heading; PH: plant height (cm); SL: spike length (cm); SPS: spikelets per spike; GPS: grains per spike; MSY: main spike yield (g); TSW: 1000 seed weight; GY: grain yield (kg ha<sup>-1</sup>). Genotypes 15 ('Sarsabz') and 16 ('Kiran-95') are commercial checks.<sup>1</sup> NIA-Shaheen was previously coded as CIM-04-10.

| locations | NIA-Shaheen | Check cultivars |        |         |        |       |        |           |
|-----------|-------------|-----------------|--------|---------|--------|-------|--------|-----------|
| Locations |             | T.D-1           | % Inc. | Sarsabz | % Inc. | TJ-83 | % Inc. | Site mean |
| Radhan    | 4577        | 1750            | 62     | 2111    | 54     | 2611  | 43     | 2692      |
| Umerkot   | 4056        | 3278            | 19     | 3667    | 10     | 3222  | 21     | 3502      |
| Thatta    | 6689        | 6244            | 07     | 6189    | 07     | 5667  | 15     | 6129      |
| Kunri     | 6111        | 5778            | 05     | 4389    | 28     | 5667  | 04     | 5664      |
| T. Jam    | 4575        | 3444            | 25     | 4222    | 08     | 3778  | 17     | 3663      |
| Gen. mean | 4576        | 4360            |        | 4351    |        | 4395  |        | 4305      |

Table 3. Grain yield performance of 'NIA-Shaheen' with percentual increase (% Inc.) over check cultivars in multi-environment yield trials at five locations in Sindh, Pakistan

Note: Gen. mean: genotypic mean; % Inc: Percent (%) increase over local checks. T.D-1, Sarsabz and TJ-83 are used as check cultivars.

in the Technical Sub-Committee for Approval of Cultivarsand Techniques, Government of Sindh, Pakistan. Finally, based on the distinctness, uniformity, and stability (DUS) features of CIM-04-03, the proposal was unanimously approved in the 62nd meeting of the provincial Seed Council, Government of Sindh, in Karachi on 29 January 2020, and the cultivar was released for general cultivation in Sindh province as a high yielding, lodging-resistant, and disease-tolerant cultivar.

## AGRONOMIC FEATURES AND PERFORMANCE

The agronomic traits of the NIA-Shaheen cultivar (previously CIM-04-10) are provided in Tables 1 and 2. 'NIA-Shaheen' has modern plant architecture with average plant height, 103 cm; days to heading, 78.2; medium maturity life cycle, 125-130 days; broad erect leaves; semi-erect flag leaf with a slight twist and waxy sheath; a stiff, erect stem; and high tillering capacity, 493/tillers m<sup>2</sup>. 'NIA-Shaheen' has a long spike, 12.4 cm; spikelets per spike, 21.0; grains per spike, 61.3; and main spike yield, 3.0 g. The cultivar has bold grains of amber color; high thousand seed weight, 45.0g; seed length, 6 mm; seed width, 3.5 mm; and seed thickness, 3 mm. It has good bread-making quality; high tertest weight, 78.7 kg hl<sup>-1</sup>; good protein content, 13.8%; starch content, 55.7%; and wet gluten content, 27%, as shown in Table 6. The cultivar is also resistant to lodging; lodging is a major obstacle in achieving yield potential, due to high wind speed, and is considered essential in this system.

| S/No.   | Location   | GY (NIA-Sh) | GY L.C | % Inc. | S/No. | Location  | GY (NIA-Sh) | GY L.C | % Inc. |  |
|---------|------------|-------------|--------|--------|-------|-----------|-------------|--------|--------|--|
| 2013-14 |            |             |        |        |       |           |             |        |        |  |
| 1       | MARC. J    | 2369        | 1658   | 43     | 10    | ARF-Kar   | 5142        | 4016   | 28     |  |
| 2       | CCRI-PS    | 2874        | 2243   | 28     | 11    | Sargodha  | 3671        | 2638   | 39     |  |
| 3       | Mardan     | 5361        | 4417   | 21     | 12    | Multan    | 4028        | 3341   | 21     |  |
| 4       | Charsada   | 5028        | 4444   | 13     | 13    | Khanewal  | 4276        | 3570   | 20     |  |
| 5       | NIFA-Pr    | 3840        | 2866   | 34     | 14    | WRI-FSD   | 4638        | 4306   | 08     |  |
| 6       | AJK        | 1829        | 1506   | 21     | 15    | J. Arain  | 4216        | 3760   | 12     |  |
| 7       | Sahiwal    | 3862        | 2959   | 31     | 16    | Gurh More | 5918        | 5322   | 11     |  |
| 8       | PRI-KSK    | 3345        | 2764   | 21     | 17    | T. Jam    | 4417        | 3834   | 15     |  |
| 9       | Gujranwala | 2362        | 1664   | 42     | 18    | Sakrand   | 3095        | 2745   | 13     |  |
| 2014-15 |            |             |        |        |       |           |             |        |        |  |
| 1       | Kal.Kot    | 4201        | 3687   | 14     | 10    | RARI-BP   | 3714        | 2546   | 46     |  |
| 2       | RRS-BP     | 3944        | 3670   | 22     | 11    | WRI-Tjam  | 4537        | 2488   | 82     |  |
| 3       | Sahiwal    | 4564        | 3856   | 18     | 12    | Mardan    | 7184        | 5333   | 35     |  |
| 4       | Kala.SK    | 3173        | 2471   | 28     | 13    | MARC-J    | 1937        | 1583   | 22     |  |
| 5       | Fort.A M   | 4500        | 4000   | 13     | 14    | BARS-Kt   | 2862        | 1597   | 79     |  |
| 6       | Kikri.RYK  | 5753        | 4727   | 22     | 15    | AJK       | 2353        | 1935   | 22     |  |
| 7       | J. Arain   | 4567        | 3728   | 23     | 16    | AZRC-Q    | 2084        | 1660   | 25     |  |
| 8       | Jhanian    | 3535        | 2446   | 45     | 17    | M-Sawat   | 2402        | 1658   | 45     |  |
| 9       | Ali.P.M.G  | 5611        | 4278   | 31     | 18    | AZRI- BP  | 2733        | 2068   | 32     |  |

Table 4. The best grain yield (kg ha<sup>-1</sup>) performance of 'NIA-Shaheen' in NUWYT trials across Pakistan (2013-14; 2014-15)

Note: S/No: Serial number; NIA-Sh: Nia-Shaheen; GY: grain yield (kg ha-1); L.C: Local check; % Inc: Percent increase. Data source: NUWYT 2013-14 and 2014-15.

| S. No. | [ntm/       | 2013-14   |           | 2014-15     |           |  |  |  |
|--------|-------------|-----------|-----------|-------------|-----------|--|--|--|
|        | Entry       | Leaf rust | Leaf rust | Yellow rust | Stem Rust |  |  |  |
| 1      | V-10110     | 6.53      | 5.85      | 2.78        | 3.84      |  |  |  |
| 2      | TW96018     | 8.13      | 7.83      | 2.09        | 6.13      |  |  |  |
| 3      | NIA-Shaheen | 8.94      | 8.86      | 4.16        | 6.4       |  |  |  |

#### Table 5. Performance of 'NIA-Shaheen' for rust resistance in NUWYT based on RRI value

Note: S/No: Serial number; Rust data is provided as RRI (Relative rate index) values of the candidate lines. Data source: NUWYT 2013-15.

| Table 6. Seed quality traits of | 'NIA-Shaheen' compared v | with the check cultivars (2013-14) |
|---------------------------------|--------------------------|------------------------------------|
|---------------------------------|--------------------------|------------------------------------|

| Line        | 1000 Seed weight<br>(g) | <b>Test weight</b><br>(kg hl <sup>.1</sup> ) | Starch<br>(%) | Grain protein<br>(% d.b) |
|-------------|-------------------------|----------------------------------------------|---------------|--------------------------|
|             |                         | 2013-14                                      |               |                          |
| NIA-Shaheen | 43.4                    | 75.1                                         | 53.3          | 13.8                     |
| TD-1        | 26.0                    | 75.2                                         | 52.9          | 13.8                     |
| GALAXY 13   | 36.1                    | 71.9                                         | 55.6          | 11.8                     |

Note: kg hl-1: kilograms per hectoliter; % d.b: Grain protein concentration. Data source - NUWYT results.

'NIA-Shaheen' has been evaluated in the Preliminary Yield Trial (PYT), AST, and major yield trials for its distinctness from other local cultivars based on its morphological traits (Tables 1 and 2). 'NIA-Shaheen' has also been evaluated in multi-location zonal (Table 3) and national NUWYT (Table 4) trials, which provide reliable data on its performance, adaptability, and stability (Woyann et al. 2019). A 10 to 15-year inbreeding process is usually required to develop a new crop cultivar. The fundamental prerequisite for a candidate cultivar is that it be distinct, uniform, and stable in its characteristics and performance (Saccomanno et al. 2020). Before this cultivar was released, the Federal Seed Certification and Registration Department (FSC&RD) provided the certificates/registry for distinctness, uniformity, and stability (DUS) of the candidate line. The DUS provides the descriptive evaluation to identify the cultivar from other existing cultivars, using the morphological traits, and also checks its uniformity and stability (Saccomanno et al. 2020). The results provided by the FSC&RD suggested that the cultivar NIA-Shaheen is uniform, distinct, and stable than all other existing cultivars of Pakistan.

NIA-Shaheen showed tolerance to rust diseases viz., leaf (RRI: 8.94) and black stem rust (RRI: 6.4) and moderately tolerant (RRI: 4.16) to yellow rust (Table 5). NIA-Shaheen presented in national varietal trials (conducted all over the country) with the highest yield of 7184 kg ha<sup>-1</sup>, which was at par to local check (Table 4). The mean grain yield of cultivar was 4015 kg ha<sup>-1</sup> in pooled data on 30 locations conducted all over the country and remained at par with local control and other check cultivars in yield, it includes excellent features for quality and disease performance (Table 4). Moreover, its DUS characteristics are suitable for its release and meet the criterion "new to market" required by the production chain (Schiocchet et al. 2014).

#### SEED PRODUCTION AND DISSEMINATION

The cultivar was released (No. f.1-15/DUS report/272-73) on the market for general cultivation in the Sindh province, with initial seed availability of 3750 kg bags for the 2021 crop year. In coming years, greater seed quantity will be available to public and private sectors for further proliferation and dissemination of this cultivar among farmers.

#### ACKNOWLEDGEMENTS

The provision of exotic material from CIMMYT, Mexico, for local assessment, in coordination with NARC, was fundamental for this study. We are grateful for the cooperation of the different scientists working at the Nuclear Institute of Agriculture (NIA), Tando Jam, who graciously contributed timely responses to our queries regarding soil analyses and conducted the studies regardingtheproduction technology of 'NIA-Shaheen'.

#### REFERENCES

Arain S, Sial MA, LaghariKA and Jamali KD (2017) Screening for resistance against rust diseases in advanced wheat (*Triticumaestivum* L.)

genotypes. Advances in Plants Agricultural Research 7: 235-239.

Benin G, Milioli AS, Meira D, Woyann LG, Bozi AH, Rosa AC, Madella LA, Panho MC, Dallacorte LV, Fernandes RA and Fernandes VK (2020)

# SM Arain et al.

UTF 25-Early bread wheat cultivar with white flour. Crop Breeding and Applied Biotechnology 20: e344920414.

- Dong B, Zheng X, Liu H, Able JA, Yang H, Zhao H, Zhang M, Qiao Y, Wang Y and Liu M (2017) Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. **Frontiers in Plant Sciences 8**: 1008.
- FAO Food and Agriculture Organization of the United Nations (2020) World food situation. Available at <a href="http://www.fao.org/worldfoodsituation/csdb/en/">http://www.fao.org/ worldfoodsituation/csdb/en/</a>>. Accessed on December 31, 2020.
- Federizzi LC, Carbonell SA, Pacheco MT and Nava IC (2012) Breeders' work after cultivar development: the stage of recommendation.**Crop Breeding and Applied Biotechnology S2**: 67-74.
- Feng Su-Wei, Ru Zhen-Gang, Ding Wei-Hua, Hu Tie-Zhu and Li Gan (2019) Study of the relationship between field lodging and stem quality traits of winter wheat in the north China plain. Crop and Pasture Science 70: 772-780.
- He M, He C-Q and Ding N-Z (2018) Abiotic stresses: General defenses of land plants and chances for engineering multi stress tolerance. Frontiers in Plant Sciences 9: 1771.
- Islam SMF and Karim Z (2018) World's demand for food and water: The consequences of climate change. In Farahani MHDA (ed) Desalination-challenges and opportunities. IntechOpen, London, p. 1-28.

Nouri-Ganbalani A, Nouri-Ganbalani G and Hassanpanah D (2009) Effects

of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. Journal of Food, Agriculture and Environment 7: 228-234.

- Saccomanno B, Wallace M, O'Sullivan DM andCockram J (2020) Use of genetic markers for the detection of off-types for DUS phenotypic traits in the inbreeding crop, barley. Molecular Breeding 40: 13.
- Schiocchet MA, Noldin JA, Raimondi JV, TulmannNeto A, Marschalek R, Wickert E, Martins GN, Hickel E, Knoblauch R, Scheuermann KK and Eberhardt DS (2014) SCS118 Marques - New rice cultivar obtained through induced mutation. Crop Breeding and Applied Biotechnology 14: 68-70.
- Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PVV and NayyarH (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. **Frontiers in Plant Sciences 9**: 1705.
- UN (2015) The world population prospects: 2015 revision | latest major publications - United Nations Department of Economic and Social Affairs. [online]. Available at <https://www.un.org/en/development/ desa/publications/world-population-prospects-2015-revision.html>. Accessed on January 04, 2021.
- Woyann LG, Zdziarski AD, Baretta D, Meira D, Dallacorte LV and Benin G (2019) Selection of high-yielding, adapted and stable wheat lines in preliminary trials. Crop Breeding and Applied Biotechnology 19: 412-419.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.