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Abstract: Human population growth in combination with changing patterns 
of global food consumption under climate change is posing formidable chal-
lenge to attaining sustainable global food security. Besides being economically 
viable sources of plant based protein for human consumption, pulses are also 
beneficial for the environment owing to their inherent capacity of nitrogen 
fixation. Hence, further development of pulses has become imperative in the 
vigorously transitional global scenario where flourishing anthropogenic activities 
are triggering irreplaceable depletion of natural resources. During past years, 
considerable attention has been given on the use of next generation sequencing 
for enriching the genomic resources in pulse crops including high-throughput 
DNA markers, candidate gene(s) and QTLs for predicting plant phenotypes, and 
whole genome sequences. With refinements in DNA sequencing technologies 
and computational analytical tools, the rapidly grown numbers of sequenced 
pulse genomes offer novel insights on crop evolution and breeding history. 
Integration of new-generation genomic and phenomic tools with generation 
acceleration procedures like genomic selection and speed breeding could greatly 
accelerate progress in pulses genetic improvement. The present review discusses 
current status and future scope of using next-generation breeding approaches 
in pulses that will cause not only an increase in the rate of developing climate-
resilient superior cultivars but also help to reach to goal of global food security.
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INTRODUCTION

Pulses, defined as legumes that yield dry seed for human use, are agronomically 
valuable plants, both in the food system and in the field. Grain legumes used for 
human consumption especially pulses have witnessed a reinvigoration in the last 
decade as a way to tackle agricultural issues all around the world (Bohra et al. 2015, 
Varshney et al. 2015). Pulses are among the best plant-based sources of dietary 
protein and other nutrients such as iron, zinc, magnesium and of dietary fibre 
(Bohra et al. 2014, Kouris-Blazos and Belski 2016, Maphosa and Jideani 2017). A 
plant-based agrarian diet which is rich in fruit or legume fibre assists to enhance 
microbial diversity and exerts a positively influence in the levels of short-chain 
fatty acids, which are important for maintaining a good intestinal health (Simpson 
and Campbell 2015). Apart from providing nutritional health benefits, legumes 
also augment the soil’s fertility owing to their characteristic feature of symbiotic 
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nitrogen fixation with the help of Rhizobium spp. in their root nodules (Graham and Vance 2003, Stagnari et al. 2017). 
Pulses provide a sustainable option by plummeting the demand of chemical fertilization and several high protein 

containing pulses can be explored as a substitute of meat around the world (Maphosa and Jideani 2017). Food and nutritional 
security is a global issue, as indicated by nearly 800 million people suffering from chronic malnutrition worldwide (http://
faostat.fao.org/). With the world’s population expected to reach 9-10 billion people, the growing quest for sustainable food 
systems caused a paradigm shift in nutritious global diets (Godfray et al. 2010, Massawe et al. 2016, Varshney et al. 2021). 
Land-use alterations, which are one of the key forces affecting soil sustainability and biodiversity, will be exacerbated by 
global warming and anthropogenic campaign especially in agriculture (Houghton et al. 2012). In view of above, economically 
nutritious foods need to be introduced or created in order to eliminate all types of hunger and malnutrition, as stated by 
the United Nations (UN) Sustainable Development Goals (United Nations 2015). Pulses are harvested primarily for their 
dry grains resulting in a total of 11 pulse crops (http://faostat.fao.org/) (Cheng et al. 2019).

Leguminosae or Fabaceae, comprising 750 genera and 20,000 species (Polhill 1981), constitutes the third largest 
family of flowering plants after the orchid (Orchidaceae) and sunflower (Asteraceae) families (Walters 1960). Globally, 
a total of 93.23 million tons (m t) of pulses are harvested from 91.77 million (m) ha of land, with a productivity of 1016 
kg ha-1 (http://faostat.fao.org/). In total, 92.82 % of the global pulse production (86.53 m t) with an acreage of 91.58% 
(84.05 million ha) is shared by major pulse crops, viz. dry beans (mainly common bean), chickpea, dry peas (pea), 
cowpea, pigeonpea, lentil and faba bean with cumulative average productivity of 1030 kg ha-1  (http://faostat.fao.org/). 

Pulse crops are broadly categorized into two distinct groups based on their adaptability to tropical and temperate 
agro-climatic conditions, viz. 1) warm season crops (common bean, pigeonpea and cowpea), and 2) cool season crops 
(pea, chickpea, lentil and faba bean) (Cannon et al. 2009, Young et al. 2003, Zhu et al. 2005). Owing to domestication 
early in pre-history (c. 11,000 years ago), chickpea, pea and lentil are not only considered among the founder grain crops 
but also paved the way for establishment of modern agriculture (Zohary and Hopf 2000). Due to their high agricultural 
value, extensive research has been conducted on pulse improvement through conventional breeding, resulting in the 
development and release of several high-yielding varieties (Singh 2005, Saxena 2008, Pérez de la Vega et al. 2011, Torres 
et al. 2011, Gaur et al. 2012), as well as an increase in the global area under pulses from 64 to 91.77 million hectares 
over the last 60 years (http://faostat.fao.org/). However, productivity aspects of the above mentioned seven major 
pulse crops is still lacking and needs to be addressed in order to meet the growing protein calorie demand of the world 
(Figure 1). Factors like cultivation in risk prone environments, erratic rainfall, prolonged dry spells, vulnerability to variety 
of pest and disease limit pulse production and make them lag behind the other crops especially cereals (Borlaug 1973, 
Varshney et al. 2011, Varshney et al. 2013a). Concerted efforts are required to overcome the biotic and abiotic barriers 
hampering the yield of pulse crops (Table 1).  This herculean task can be achieved by dynamic fusion of genomic tools 
with conventional breeding methods to augment the crop improvement progress. 

Figure 1. Global trends in productivity of seven major pulse crops. The Figure illustrates trends in productivity of major pulse crops 
witnessed over last six decades.
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Table 1. Genome organization, productions areas, major constraints and anti-nutritional factors in key pulse crops

Pulse crop Scientific 
name

Ploidy level/ 
chromosome 

count

Genome 
size [1C 
(Mbp)]*

Major growing areas
Production constraints Major anti-nutritional 

factorsBiotic Abiotic

Adzuki 
bean (Red 
bean)

Vigna angu-
laris 2n = 22 490

Japan, Korean 
peninsula, and 
China,Nepal and 
Bhutan (Vaughan et 
al. 2005)

Brown stem rot (Phi-
alophora gregata), 
phytophthora stem rot 
(Phytophthora vignae f.sp. 
adzukicola), wilt (Fusarium 
oxysporum f. sp. adzukico-
la), and bruchids (Vaughan 
et al. 2005)

Low tempera-
ture

Trypsin inhibitors, 
phylates and galacto-
sides (Yoshida et al. 
2010)

Bambara 
bean 
(Earth pea, 
ground-
bean)

Vigna sub-
terranea 2n = 22 882

Mali, Burkina Faso, 
Cameroon, Niger, 
Togo and the Demo-
cratic Republic of 
Congo (Majola et al. 
2021)

Cercospora leaf spot 
(Cercospora canescens), 
powdery mildew (Erysiphe 
polygoni), Fusarium wilt 
(Fusarium oxysporum f. sp. 
voandzeia), rust (Puccinia 
graminis f.sp. tritici), leaf 
blight (Colletotrichum 
graminicola), cowpea 
aphid-borne mosaic 
virus (CABMV), black-eye 
cowpea mosaic virus 
(BECMV), peanut mottle 
potyvirus (PMV), cowpea 
mottle comovirus (CMV), 
cowpea yellow mo-
saic virus (CYMV), cowpea 
weevil, bruchids, root-knot 
nematode (Meloidogyne 
javanica) (Majola et al. 
2021)

Drought 
(Majola et al. 
2021)

Condensed tannins 
(CTs), phytic acid 
phosphate (PAP), poly-
phenol, and trypsin 
inhibitor (Unigwe et 
al. 2018)

Chickpea 
(Gram)

Cicer arieti-
num 2n = 16 749.7

India, Australia, 
Pakistan, Myanmar, 
Turkey, Ethiopia, Iran, 
Mexico, Canada and 
USA (http://faostat.
fao.org/)

Dry root rot (Rhizoctonia 
bataticola), Fusarium wilt 
(Fusarium oxysporum f. sp. 
ciceris), collar rot (Sclero-
tium rolfsii), wet root rot 
(Rhizoctonia solani) and 
black root rot (Fusarium 
solani), Ascochyta blight 
(Ascochyta rabiei), 
Botrytis gray mold (Bot-
rytis cinerea), Stemphy-
lium blight (Stemphylium 
sarciniforme), Bacte-
rial blight (Xanthomonas 
campestris pv. cassiae) 
Beet armyworm (Spodop-
tera exigua), leafminer 
(Liriomyza cicerina), black 
aphid (Aphis craccivora), 
Pod borers (Helicoverpa 
armigera) (Nene et al. 
2012)

Drought, 
heat and cold 
stress

Protease inhibitors, 
amylase inhibitors, 
phytolectins, polyphe-
nols, and oligosac-
carides

Common 
bean

Phaseolus 
vulgaris 2n = 22 588

Nigeria, Myanmar, 
India, Brazil, Niger, 
USA, Tanzania, Mex-
ico, China, Uganda 
(FAOSTAT, 2019)

Web blight (Thanatepho-
rus cucumeris), Cercospora 
leaf spot (Cercospora cru-
enta), Anthracnose (Colle-
totrichum lindemuthi-
anum), rust (Uromyces 
appendiculatus), Angular 
leaf spot (Pseudocercos-
pora griseola), Bacte-
rial blight (Xanthomonas 
axonopodis pv phaseoli), 
Halo blight (Pseudomonas 
syringae pv. phaseolicola), 
Bean common mosaic 
virus (BCMV), Aphids, Ar-
myworms, Corn earworm , 
Cutworms, Leafminers, 
Mexican bean beetle, 
Stinkbugs (Degu et al. 
2020, OECD 2016)

Low soil 
phosphorus 
(Beebe et al. 
2014)

lectin, saponin, trypsin 
inhibitor and phytic 
acid (Rui et al. 2016)



4 Crop Breeding and Applied Biotechnology - 21(S): e394221S13, 2021

A Kumar et al.

Common 
vetch Vicia sativa 2n = 12 2254

Turkey, Albania, 
Lebanon, India, 
China, North Amer-
ica, Spain, Australia 
(Ennenking and Tate 
2006, Firincioglu et 
al. 2010)

Powdery mildew (Erysiphe 
pisi), pea aphid (Acyrthosi-
phon pisum) Frost (Chung 

et al. 2013)

beta cyano L alanine 
and its derivatives 
(Tate and Ennenking 
2006)

Cowpea 
(black eye 
bean)

Vigna un-
guiculata 2n = 22 1176

Nigeria, Niger, 
Burkina Faso, 
Tanzania, Cameroon, 
Mali, Myanmar, 
Kenya, Mozambique, 
Democratic Republic 
of the Congo (http://
faostat.fao.org/)

Leaf smut or false smut 
(Protomycopsis phaseoli), 
Bacterial blight (Xan-
thomonas campestris 
pv vignicola ), bacterial 
pustule (Xanthomonas 
campestris pv. vigna eu-
guiculatae), cowpea aphid 
borne mosaic (CABMV), 
cucumber mosaic virus 
(CMV), cowpea mild mot-
tle virus (CPMMV) and 
cowpea severe mosaic 
virus (CPSMV), Root-knot 
nematodes (Meloi-
dogyne incognita and M. 
jjavanica),Koch (Aphis 
craccivora), bruchids 
(Callosobruchus maculatus 
(Fabricius)), beetles (Oo-
theca mutabilis), maruca 
(Maruca vitrata), leafhop-
pers and foliage beetles, 
Parasitic weeds: Striga 
gesnerioides (Willd.) Vatke 
and Alectra vogelii Benth 
(Horn and Shimelis 2020)

Drought and 
heat stresses 
and poor soil 
fertility (Horn 
and Shimelis 
2020)

Phytate, polphenols, 
enzyme inhibitors 
(trypsin, chymot-
rypsin) (Frias et al. 
1995)

Faba bean 
(Broad 
bean, 
horsebean)

Vicia faba 2n = 12 13034

China, Europe, 
Northern Africa, 
West Asia and Aus-
tralia (http://faostat.
fao.org/)

Ascochyta blight (As-
cochyta fabae), chocolate 
spot (Botrytis fabae) rust 
(Uromyces viciae-fabae), 
faba bean necrotic yellows 
virus (FBNYV), bean yel-
low mosaic virus (BYMV), 
black root rot (Fusarium 
solani), faba bean root rot 
(Aphanomyces euteiches), 
powdery mildew (Erysiphe 
pisi var. pisi), stem rot 
(Sclerotinia trifoliorum), 
black bean aphid (Aphis 
fabae), pea leaf weevil 
(Sitona lineatus), broad 
bean weevil (Bruchus 
rufimanus) (Karkanis et al. 
2018)

Drought and 
heat stress 
(Katerji et al. 
2011)

phenol and condensed 
tannin/proanthocyani-
din (Kumar et al. 2015)

Grass pea Lathyrus 
sativus 2n = 14 8330

India, Pakistan, 
Bangladesh, Nepal, 
Ethiopia (Vaz Patto et 
al. 2006)

Powdery mildew (Ery-
siphe pisi), downy mildew 
(Peronospora spp), rust 
(Uromyces spp.), blight 
(Mycosphaerella pinodes), 
orobanche, root knot 
nematode (Meloidogyne 
artiella) and cyst nema-
tode (Heterodera ciceri) 
(Vaz Patto et al. 2006)

-
ODAP, nitriles (Vaz 
Patto and Rubiales 
2014)

Hyacinth 
bean 
(Lablab)

Lablab 
purpureus 2n = 22

367 
(Iwata et 
al. 2013)

India, Nepal, China, 
Bagladesh, Thailand, 
Australia and Eastern 
Africa (Maass et al. 
2010)

Bruchid (Callosobruchus 
spp.), pod borer (Adisura 
atkinsoni), anthracnose 
(Colletotrichum linde-
muthianum), leaf spot 
(Cercospora dolichi) and 
powdery mildew (Leveil-
lula taurica)

Drought 
(Maass et al. 
2010)

Tannins, phylates 
and trypsin inhibitors 
(Murphy and Colucci 
1999)
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Lentil Lens culi-
naris 2n = 14 4125.8

Canada, India, 
Turkey, Australia, 
Nepal, USA, China, 
Ethiopia, Bagladesh, 
Syrian Arab Republic 
(http://faostat.fao.
org/)

Wilt (Fusarium oxyspo-
rum f. sp. lentis), Rust 
(Uromyces viciae-fabae), 
Ascochyta blight (Ascochy-
ta fabae f.sp. lentis) Sitona 
weevil/bruchids, Aphids 
(Agrawal et al. 2013)

Drought, 
heat, cold and 
frost (Agrawal 
et al. 2013)

oligosaccharides, 
α-galactosides, trypsin 
inhibitors (Vidal-Val-
verde et al. 1994)

Lupins

White Lupinus 
albus 2n = 50 568.4

Australia, Poland, 
Ukraine (http://fa-
ostat.fao.org/)

Anthracnose (Colletotri-
chum lupini), Phomopsis 
stem blight (Diaporthe 
toxica), rust (Urmyces 
lupinicolus), gray mold 
(Botrytis cinerea),, cucum-
ber mosaic virus (CMV), 
bean common mosaic 
virus (BYMV) (Clements et 
al. 2005)

Alkaline soil, 
frost

Alkaloids (Qui-
nolizidine)

Yellow L. luteus 2n = 52 980

Narro-
leafed

L. angusti-
folius 2n = 40 926.1

Moth bean 
(Mat bean)

Vigna aco-
nitifolia 2n = 22 1078

Mungbean 
(Green 
gram)

Vigna 
radiata 2n = 22 588

India, Pakistan, 
China, Myanmar and 
Thailand (Isemura et 
al. 2012)

Leaf spot (Cercospora 
canesens), Powdery mil-
dew (Erysiphe polygoni), 
anthracnose (Colletotri-
chum spp.), mungbean 
yellow mosaic virus 
(MYMV), bruchids, white 
fly (Bemicia tabaci), thrips 
(Megalurothrips distalis) 
(Nair et al. 2019)

Alkaline soil, 
iron deficien-
cy chlorosis 
(Prathet et al. 
2012)

Trypsin inhibitors, 
haemaglutinins and 
phylates (Lambrides 
and Godwin 2007, 
Sompong et al. 2012)

Pigeonpea Cajanus 
cajan 2n = 22 784

Asia,Eastern and 
Southern Africa, 
Latin America and 
Caribbeancountries 
(Choudhary et al. 
2011)

Fusarium wilt (Fusarium 
udum), sterlity mosaic 
(Pigeonpea Sterlity Mosaic 
Virus) and phytopthora 
blight (Phytopthora 
drechslei sp. cajani).Pod-
bug (Calvigralla gibbosa, 
C. scutellarius), Pod borer 
(H. Armigera), leaf web-
bers, cutworms (Agrotis 
ipsilon and Ochropleura 
flammatra) and hairy cat-
erpillars (Amsacta moorei, 
A. albistriga and Spilo-
soma obliqua) (Sharma et 
al. 2010)

Waterlogging, 
Drought, Low 
temperature, 
photoperiod, 
soil salin-
ity, Al toxicity 
(Choudhary 
et al. 2011)

Protease inhibitors, 
amylase inhibitors, 
phytolectins, polyphe-
nols, and oligosac-
carides

Rice bean Vigna um-
bellata 2n = 22 588

Eastern India, Myan-
mar, Thailand,Nepal 
and Southern China 
(Isemura et al. 2010)

Rust (Uromyces appen-
diculatus), cercospora 
leaf spot and web blight 
(Rhizoctonia solani) (Khad-
ka and Acharya 2009)

- Trypsin inhibitors and 
Phylates

Urd bean Vigna 
mungo 2n = 22 588

India, Myanmar, 
Thailand, Phillipines 
and Pakistan (Gupta 
et al. 2013a)

Leaf crinkle virus, MYMV 
and bruchids (Sharma et 
al. 2011)

Salinity and 
drought

Trypsin inhibitors and 
Phylates

*Information used from http://data.kew.org/cvalues/.
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Availability of economically viable next generation sequencing (NGS) technologies has led to remarkable advances 
in genomic resources of pulses including the whole genome sequencing (Varshney et al. 2013b, Varshney et al. 2017). 
NGS based protocols such as genotyping by sequencing (GBS) have been implemented for discovering and genotyping 
SNPs in large populations and germplasm collections (Bohra et al. 2020a, Jaganathan et al. 2020). Stupendous scope has 
been generated for forward genetics approaches like QTL mapping intending to decipher the gene(s)/QTLs underlying a 
particular phenotype. Further, exciting opportunities like marker development, trait mapping and molecular mapping 
have knocked on the door with the advent of application of genome-wide strategies like restriction-site associated DNA 
sequencing (RADSeq) in pulses (Yang et al. 2012, Yang et al. 2013a, Yang et al. 2013b). In consideration of the above, 
this review summarizes the production scenario and constraints, the available genomic resources and their downstream 
applications as well as prospects for genomics-assisted breeding (GAB) in selected pulse crops. 

MOLECULAR MARKERS AND GENOTYPING ASSAYS IN PULSES

Since its discovery in 1980s, the DNA marker system has revolutionized the science of plant breeding. The molecular 
marker technology evolved remarkably since the discovery of first molecular marker system restriction fragment 
length polymorphism (RFLP). Several classifications have been proposed to classify DNA based molecular markers. For 
instance, classification based on their generation of development (First generation vs 2nd generation vs 3rd generation vs 
4th generation vs 5th generation), hybridization vs non-hybridization, array based vs non-array based, sequence based vs 
non-sequence based, low-throughput vs high-throughput vs ultra-high throughput, past vs present vs future molecular 
markers (Mir et al. 2013a, Mir and Varshney 2013, Gupta et al. 2013, Kumar et al. 2021). The recent advances in genomics 
tools and techniques have helped in the development of variety of molecular markers in crop plants including legume 
crops. Legume crops like chickpea, pigeonpea, groundnut, lentil, etc. were once considered as “orphan crops” due to 
lack of sufficient or availability of insufficient genomic resources in these legume crops. However, in the last decade, 
tremendous progress was made and large repertoire of molecular markers has been developed in these important 
legume crops. The success in development of these markers could be attributed to the evolution of new sequencing 
technologies that led to the reduction in cost of DNA sequencing (Varshney et al. 2019). A number of marker types that 
are available include thousands of SSRs, diversity arrays technology (DArT) markers, single nucleotide polymorphism 
(SNP) markers, different SNP platforms, micro-array based markers, NGS-based markers, genotyping by sequencing 
(GBS), InDel markers etc. The marker resources available in chickpea and pigeonpea have been recently summarized 
(see Bohra et al. 2020a, Roorkiwal et al. 2020). Briefly, using different approaches, thousands of SSR (>3000 in chickpea, 
>3000 in pigeonpea) have become available over the years and DArT markers with >15360 features each for chickpea, 
pigeonpea and groundnut have been also developed by ICRISAT in collaboration with DArT Pvt Ltd, Australia. In addition 
to thousands of SSR and DArT markers, tens of thousands of SNP markers have also been developed by ICRISAT in 
collaboration with national/international partner’s using variety of approaches. 

The availability of marker resources has led to the development of different types of genotyping platforms/assays 
(including Kompetitive Alelle Specific PCR (KASP) assays, GoldenGate assays, Vera-code assays, 60K SNP chips using 
Affymetrix SNP platform and Axiom SNP array with thousands of SNPs) by public and private research organization/
companies for their research/commercial use. Most of these genotyping platforms developed are based on SNP markers, 
since SNP markers considered as markers of choice and are amenable to high-throughput genotyping. The genotyping 
platforms available can be classified into low-density (1-10 SNPs), medium-density (2-10 K SNPs) and high-density (>20K 
SNPs) genotyping platform (Varshney et al. 2019). The low density genotyping platforms can be used in early generation 
testing, marker-assisted selection (MAS) and testing hybridity. The medium and high-density genotyping platforms have 
been extensively used in genetic diversity studies, genomic selection (GS), background selection, mapping genes/QTLs 
in different crop plants through genome-wide association studies (GWAS) and linkage mapping/QTL mapping. ICRISAT 
in collaboration with Intertek company is extending low-density (10 SNPs) genotyping for many crop species, including 
chickpea, pigeonpea and groundnut for foreground selection in early generations of breeding program (Varshney 2016, 
Varshney et al. 2019). Among the high-density genotyping platforms, the most recent SNP Arrays with genome-wide 
SNPs tiled on these have been developed in crops like chickpea (Roorkiwal et al. 2018a), pigeonpea (Saxena et al. 2018), 
field pea (Tayeh et al. 2015a). Moderate density genotyping platforms including genotyping by sequencing (GBS) and 
restriction-site-associated sequencing (RAD-Seq) have been also used successfully in chickpea for genetic studies (Roorkiwal 



Next generation breeding in pulses: Present status and future directions

7Crop Breeding and Applied Biotechnology - 21(S): e394221S13, 2021

et al. 2020). In summary, different molecular marker systems have been used in the study of genetic diversity, population 
structure, development of genetic maps and QTL mapping/ GWAS for key traits in pulse crops including chickpea, and 
pigeonpea. The genes/QTLs once identified are deployed in molecular breeding programs aimed at enhancing targeted 
traits in different crop plants through marker-assisted selection (MAS), marker-assisted recurrent selection (MARS) and 
GS. It is expected that the improved versions of next-generation crop varieties could be developed with enhanced quality 
traits, better yield and disease resistance (Varshney et al. 2021). 

MOLECULAR GENETIC MAPS 

The molecular genetic maps refer to linear arrangement of molecular markers (loci) on the chromosome that has 
been obtained on the basis of estimates of recombination fractions among the markers. These molecular genetic 
maps once developed can be used for different purposes including i) understanding genome organization, ii) study of 
evolution of species, iii) study of synteny between related species, iv) study of chromosomes/genome rearrangement 
across taxa, and more importantly v) discovery of genes/QTL through QTL interval mapping. During recent advances in 
genomics tools and technologies including advances in development of marker technologies, molecular genetic maps 
have been developed in almost all plants of significant academic and economic interest, and the list of plants is growing 
regularly. In many pulses also, linkage maps have been developed. For instance, in pigeonpea, the first genetic map was 
developed in year 2011 with 239 SSR loci (Bohra et al. 2012). Following this, several other maps were developed for 
pigeonpea (Bohra et al. 2012). However, these maps were not dense due to availability of less number of markers and 
due to less polymorphism available in the pigeonpea. However, with the availability of high-density genotyping platforms, 
the marker densities of the genetic maps in pigeonpea have now improved dramatically. The first high-density genetic 
linkage map of pigeonpea was developed using SNP markers and this map possess 910 marker loci with an average inter 
marker distance of 1.11 cM (Saxena et al. 2012). In addition to individual genetic maps, consensus genetic maps have 
also been developed in pigeonpea by merging more than one map (Arora et al. 2017). The genetic map with highest 
density in pigeonpea was constructed with 6818 SNP loci that span 974 cM of the genome (Yadav et al. 2019). A list of 
high-density genetic maps available in pigeonpea is available elsewhere (Bohra et al. 2020b). 

In chickpea, narrow genetic base and low level of intra-specific genetic polymorphism, development of good high-
density genetic mapping remained a challenge (Verma et al. 2015). However, advent of NGS technologies led to the 
development of thousands of markers and availability of high-density marker linkage maps in chickpea. For instance, 
one of the most comprehensive genetic map having 1,291 markers on eight linkage groups spanning a total of 845.56 
cM distance was developed at ICRISAT (Thudi et al. 2011). Varshney et al. (2014a) after screening thousands of markers, 
could find only few hundred polymorphic markers and ultimately were able to map 241 and 168 markers on ICCRIL03 and 
ICCRIL04 mapping populations respectively. However, with the availability of NGS tools and technologies like genotyping-
by-sequencing genotyping platform, several high-density genetic maps could be developed. For instance, using GBS, a 
high-density genetic map having 1007 mapped markers spanned around 727.29 cM was developed (Jaganathan et al. 
2015). Similarly, using GBS technology, one of the most saturated/densest intra-specific linkage maps reported with 3,363 
loci at an average marker density 0.33 cM (Verma et al. 2015). Several other linkage maps and consensus maps using 
multiple genetic mapping have been developed in chickpea (Mallikarjuna et al. 2017). In addition, integrated physical, 
genetic and genome sequence map of chickpea has also been developed (Varshney et al. 2014b). 

More recently, using NGS-based genome sequencing and resequencing technologies, millions of SNP markers have been 
discovered in chickpea and used in preparation of high-density SNP array.  Using high-density SNP array platform “Axiom 
CicerSNP Array”, genetic maps for ICCRIL03 and ICCRIL04 populations were constructed. For ICCRIL03 mapping population, 
a total of 13679 SNPs were successfully placed on eight linkage groups covering 1033.67 cM (Roorkiwal et al. 2018a). 

Like chickpea and pigeonpea, genetic linkage maps including medium-density and high-density linkage maps have 
been developed successfully in other legumes crops including groundnut and lentil. The development of these genetic 
linkage maps involved the use of a variety of molecular markers /genotyping platforms including SNP arrays.

Mapping of genes: from QTL mapping to sequence-based trait mapping
Identification of genes/QTLs through QTL interval mapping is now a routine. However, several inherent disadvantages 

are associated with QTL mapping including i) Time and labor intensive, ii) less recombination events and hence less 
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diversity sampled, iii) use of controlled crosses whose development takes several years, iv) problem of polymorphism 
while developing linkage maps, etc. Some of these disadvantages have been overcome through the use of recently 
emerged association mapping (genome-wide association studies; GWAS) as an alternative to QTL mapping. The use of 
association mapping/GWAS has become very popular in the last two decades and now GWAS has been used in almost all 
crop plants for discovery of gene/QTLs of all important traits. In grain legume crops both mapping approaches including 
QTL mapping and GWAS have been used for gene discovery and several important genes/QTLs have been discovered 
for important targeted traits. For instance, using QTL interval mapping, genes/QTLs have been identified for drought/
drought related traits and yield under drought (Mir et al. 2012, Varshney et al. 2014b). It is important to mention that 
a “QTL-hotspot” was identified on linkage group-4 that harbors 12 major QTLs  for  drought  tolerance  related  traits  
explaining  up  to  58.20%  phenotypic  variation. This important hot-spot region was later fine mapped using important 
genotyping platform “genotyping-by-sequencing (GBS)”, sliding window based bin mapping and  GWAS  based  gene  
enrichment  analysis  of  skim  sequenced data  of  RIL  population (Jaganathan et al. 2015, Kale et al. 2015). QTLs/genes 
for drought and heat responsive traits have also been identified using GWAS and candidate gene sequencing approaches 
(Thudi et al. 2014). Genes/QTLs have also been identified for important diseases in chickpea like Fusarium wilt (FW), 
Ascochyta blight (AB), botrytis gray mold (Anuradha et al. 2011, Sabbavarapu et al. 2013, Varshney 2016). In addition 
gene/QTLs have also been identified for phenology related traits, seed traits etc. (Verma et al. 2015, Ortega et al. 2019, 
Sivasakthi et al. 2019, Roorkiwal et al. 2020).  

Similarly, in pigeonpea, genes/QTLs have been identified for variety of traits using different trait mapping approaches. 
For instance genes/QTLs have been identified for important diseases like Fusarium wilt (FW) and sterility mosaic disease 
(SMD) (see Raju et al. 2010, Dubey et al. 2011, Varshney 2016, Pazhamala et al. 2017, Mir et al. 2017, Bohra et al. 
2020a, Saxena et al. 2021). Genes/QTLs have been also identified for plant height, growth habit, flowering, earliness and 
determinacy through candidate gene sequencing and whole genome scanning approaches (Bohra et al. 2011, Kumawat 
et al. 2012, Mir et al. 2013b, Mir et al. 2014, Mir et al. 2017). In addition, genes/QTLs have also been identified for 
drought, salinity, cold, agronomic traits such as fertility restoration (Priyanka et al. 2010, Bohra et al. 2011, Kumawat 
et al. 2012, Deeplanaik et al. 2013, Mir et al. 2017, Saxena et al. 2020). The use of wild relatives like C. cajanifolius 
and C. acutifolius through advance back-cross QTL mapping has also been attempted in pigeonpea to map genes for 
agronomically important traits including yield and yield contributing traits (Saxena et al. 2020).   

In view of genomics revolution in legume crops, the NGS-based high-throughput genotyping approaches are being 
used for genetic/trait mapping. This sequence-based trait mapping has been used in chickpea, pigeonpea by either 
sequencing of the whole population or pooled samples belonging to two extreme bulks for the trait of interest (see 
Pandey et al. 2016, Varshney et al. 2019, Roorkiwal et al. 2020, Bohra et al. 2020b). The NGS-based trait mapping 
overcomes several disadvantages like time consuming and costly nature of traditional approaches of trait mapping and 
therefore preferred in recent times for trait mapping., Sequenced-based  trait  mapping approaches  have  also  been 
used in  chickpea, pigeonpea and groundnut  for  identification  of  candidate genes/genomic  regions  for  rust  and  late  
leaf  spot  resistance  (see  Pandey et al. 2016, Varshney 2016, Roorkiwal et al. 2020, Bohra et al. 2020c).  

GENOME SEQUENCING INITIATIVES IN PULSES

Whole genome sequencing 

Chickpea 
Chickpea is one of the most important legume crops with its small (desi) and large sized (kabuli) seeds constituting 

the main market types. Varshney et al. (2013d) reported 532-Mb genome assembly in CDC Frontier (Kabuli chickpea) by 
whole genome shotgun sequencing approach, and assembly contained a total of 28,269 genes. The assembly had 7,163 
scaffolds greater than 1Kb and 3,659 scaffolds greater than 2 Kb. Nearly 73% of the assembly comprised of larger scaffold 
size, being N50 of 39.99 Mb. Of the total genes reported, 89.73% were annotated with 4.93 as the mean number of exon 
per gene and 236 bp as the average exon size. The assembly harboured 187 disease-resistance genes and large-scale 
DNA markers were discovered including 48,298 SSRs and 76,084 SNPs. Similarly, Jain et al. (2013) reported draft genome 
sequence of ICC 4958 (desi) having size of 520 Mb, capturing 70% of total genome size. Their genome assembly had 27,571 
predicted genes and the repeat elements comprised of 210 Mb. During comparative analysis with other dicot genome 
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numbers of gene predicted were lower but the average transcript length was reported to be higher and nearly equal to 
soybean. Another genome assembly by Parween et al. (2015) captured 511 Mb of ICC 4958 (desi) and 327 Mb-genome 
was assembled for PI 489777, a wild chickpea (Gupta et al. 2017). Among all the assemblies, Varshney et al. (2013d) have 
sequenced most of the genome approximately 74% of the total. Further, Misra et al. (2014) developed a Chickpea Genomic 
Web Resource (CGWR) to visualize the desi genotype (ICC 4958) genome and have comparatively analyzed the wild and 
cultivated genotypes of chickpea and other legume crops. Following the availability of the whole genome assemblies, 
researchers have developed several databases to catalogue genome-wide DNA markers for applications in research and 
breeding such as chickpea microsatellite database (CicArMiSatDB) (Doddamani et al. 2014) and Microsatellite Database 
(CMsDB) (Parida et al. 2015). Other databases on chickpea genomic resources include CicArVarDB encompassing SNP 
and InDel (Doddamani et al. 2015), and ISM-ILP database (Srivastava et al. 2016) that provides information on 119,169 
and 110,491 ISMs from protein-coding genes desi (23,129) and kabuli (20,386) chickpeas.

Pigeonpea 
Pigeonpea was the first pulse and second legume crop whose genome was sequenced. Using a de novo assembly 

approach and based on Illumina sequencing platform, Varshney et al. (2012) assembled 605.78 Mb of the popular 
pigeonpea variety ICPL 87119 (Asha), representing 72.7% the total genome size of pigeonpea (833.07 Mb). This assembly 
contained a total of 137,543 scaffolds with N50 of 516.06 Kb. Of the total scaffolds, 6,534 were longer than 2kb. In this 
draft genome assembly, 51.67% of the total genome was represented by the transposable elements (TE) whereas the 
total GC content was 32.8%. The genome assembly had 48,680 genes with coding sequence size of 959.39 bp and 3.59 
exons per gene. Besides protein-coding genes, further annotation identified 862 microRNAs, 763 tRNA, 329rRNA and 
363 small nuclear RNA (snRNA) in the pigeonpea genome. On comparative analysis with soybean genome (Schmutz 
et al. 2010), the number of exons per gene was 3.59 which was less than that of soybean (5), whereas lengths of exon 
(267.39 bp) and intron (536.89 bp) were found to be higher. Another draft genome assembly of pigeonpea by Singh 
et al. (2012) based on 454 GS-FLX technology. They identified 1,213 defence-responsive genes and 152 genes having 
possible association tolerance against abiotic stress. The availability of the reference genome sequence has opened 
enormous opportunity for the development of large-scale DNA markers, such as 309,052 SSRs and 28,104 SNPs across 
12 genotypes. Varshney et al. (2017) have resequenced the genomes (with the coverage depth of 5X to 12X) of 292 
pigeonpea accessions including wild species, cultivated breeding lines and landraces. Following the whole genome 
sequencing approach, Kumar et al. (2016) have reported the first hap map using 20 accessions representing parents of 
MAGIC, NAM, RIL, 18 wild and 2 cultivated lines. Similarly, first pangenome of pigeonpea contained 86.6% core genes 
and 13.4% variable genes. 

Field pea 
Field pea is used as a genetic model for genetic studies since 1980s, however its large genome size (4.45 Gb) has 

hampered the progress of pea genomics as compared to the other pulse crops. Earlier researches have reported that this 
difficulty occurs because pea genome is mostly dominated by mobile and repetitive elements mainly Ty3/gypsy family 
of transposons (Macas et al. 2007). More recently, Kreplak et al. (2019) have built a high-quality chromosomal-level 
genome assembly of the reference genotype ‘Caméor’ that spanned 3.92 Gb of the genome. The genome assembly was 
made using a combination of short read sequences (Illumina sequences) with 281X genome coverage and long read 
sequences (PacBio RSII) with 13X genome coverage. The key features of this assembly included N50 of scaffolds being 
with 415,920 bp, total length of pseudomolecules was 3.23 Gb, and the lengths of transposon regions were 2.45 Gb 
and 171 Mb of class II and class I, respectively. The genome pea assembly consisted of 44,756 genes, 30,687 of which 
were annotated. The reference pea genome provides a strong foundation to elucidate the phylogeny and evolutionary 
relationship of pea with other crops, and a variety of important genes for future improvement.

Common bean
Common bean is a short-day plant grown mainly in African and American countries. Nearly 8,000 years ago, wild 

pools independently isolated themselves in two geographical locations i.e., Mexican and South American. Schmutz et 
al. (2014) presented a genome analysis of an Andean ecotype common bean (G19833) to cover accessions ranging 
from Mexico to Argentina. Using whole genome shotgun approach, the authors assembled common bean genome on 
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11 psuedomolecules, with a mean coverage of 21X. The assembly size was reported to be 472.5 Mb, of which 468.2 
Mb was assigned to psuedomolecules. By resequencing 60 wild accessions and 100 landraces the study confirmed the 
evolutionary relationship of the Mesoamercian and Andean gene pools.

Mungbean 
Mungbean is a warm season fast growing legume in Asia belonging to subgenus Ceratotropis of genus Vigna. Kang 

et al. (2014) assembled 431-Mb of the diploid V. radiata var. radiata (VC 1973) using Illumina and GS FLX platforms, with 
the corresponding libraries providing 320-fold and five-fold coverage of the total genome. Furthermore, a wild relative 
(V. radiata var. sublobata, accession TC1966) of the domesticated mungbean was sequenced covering 82% (423-Mb) of 
the total 501 Mb genome. Similarly, a 792-Mb genome of the tetraploid V. reflexo-pilosa var. glabra (accession V1160) 
was assembled into 29,166 scaffolds. A total of 22,427 genes were predicted based on homology-based search and 
RNA-Seq data of different tissues. 

Adzuki Bean 
Adzuki bean (V. angularis var. angularis) is grown in 30 countries worldwide. To accelerate the genomic research, 

Kang et al (2015) built a genomic assembly of Chinese cultivar “Jingnong 6”. With 168X coverage of the total genome, 
443 Mb representing 75% of the total genome (591 Mb) was assembled into 3,883 scaffolds having N50 of 703 Kb. The 
repetitive content of the genome comprised of 207 Mb (44.51%), which was lower than other pulse crops such as chickpea, 
pigeonpea but almost similar to that of common bean. A total of 26,857 genes were predicted with high confidence 
and of these, 15,976 genes were assigned to pseudo chromosomes. Salient features of the genomic assemblies among 
selected legume crops are given in Table 2.

Another draft genome assembly of adzuki bean by Yang et al. (2015) based on HiSeq 2000 sequencing platform 
assembled 450 Mb contig sequences with N50 of 38 kb (168X coverage of total genome) representing 83% of the total 
genome size of adzuki bean (542 Mb). This assembly contained a total of 466.7 Mb scaffolds with N50 of 1.29 Mb, 
representing 86.11% of the total genome size. Of the total scaffolds, 6,534 were longer than 2kb. In this draft genome 
assembly, 34.57% of the total genome was represented by the retrotransposons whereas the total GC content was 
34.8%. Besides 34,183 protein-coding genes, further annotation identified 312 microRNAs, 307 tRNAs, 3730 rRNAs and 
314 small nuclear RNAs (snRNA) in the adzuki bean genome. 

TRANSCRIPTOMIC RESOURCES IN PULSES

To leverage legume functional genomics and to provide genes controlling important traits, transcriptomic resources 
have been developed in recent past. The global expression analysis in combination with gene expression atlas (Table 3), 
have elucidated the molecular mechanism underlying important plant responses that contribute towards sustainable 
agriculture production. Earlier, transcriptome assemblies were developed in pulse crops using a combination of Sanger 
and next generation sequencing platforms. For example, Dubey et al. (2011) developed a transcriptome assembly (CcTA) 

Table 2. Salient features of the genome assemblies of some pulse crops

Assembly features Chickpea Pigeonpea Field Pea Common Bean Mungbean Adzuki Bean
Genome Size 738 Mb 858 Mb 4.45 Gb 587 Mb 579 Mb 538 Mb
Genome sequenced 544.3 Mb 605.78 Mb 3.92 Gb 473 Mb 473 Mb 450 Mb
Number of Scaffold 7,163 137,542 24,623 708 2,800 37,533
N50 of (Scaffolds) 39.99 Mb 516 Kb 415,940 bp 50.4 Mb 1507 Kb 1.29 Mb
Number of exon per gene 4.93 3.59 4.33 5.5 - -
Number of predicted genes 28,269 48,680 44,756 27,197 22,427 34,183
Transposable elements 49.41% 51.67% 84% 45.42% 43% 44.51%
GC% content 30.78% 32.80% 37.60% - 33% 34.80%

References Varshney et al. 
(2013d)

Varshney et al. 
(2012)

Kreplak et al. 
(2019)

Schmutz et al. 
(2014) Kang et al. (2014) Kang et al. (2015)
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comprising of 127,754 tentative unique sequences (TUSs) and the transcriptome assembly offered sets of DNA markers 
including 8137 SSRs, 12,141 SNPs and 5845 ISR. Similarly, Dutta et al. (2011) developed a set of 3,771 genic SSR markers. 
Sinha et al. (2015a, b) in pigeonpea identified, sequenced and validated the set of 10 housekeeping genes in pigeonpea 
under salt and heat stress conditions. The study by Raju et al. (2010) reported 9,468 high quality ESTs and identified 
genes responsive to Fusarium wilt (19) and sterility mosaic disease (20), the two most prominent diseases of pigeonpea. 
More recently, transcriptome assemblies have been developed in pigeonpea based on RNA-Seq of transcriptomes from 
unopened flower buds of male sterile lines and cognate fertile lines (Bohra et al. 2021a, Bohra et al. 2021b).

Similarly in chickpea, 21,491 ESTs were developed as a rich resource for the identification of drought-responsive 
genes (Hiremath et al. 2011). A variety of DNA markers were identified including SSRs (728), SNPs (495), COS (387), 
and ISR (2088). Other transcriptome based studies in chickpea include Varshney et al. (2009) (20,162 ESTs) and Garg et 
al. (2011) (34,760 transcripts reads). In chickpea, SAGE combined with NGS has also been used for genome-wide high 
quality transcriptome profiling, which led to the identification of 3,858 drought-responsive genes in chickpea. Another 
SAGE analysis study by Afonso-Grunz et al. (2015) elucidated strongly upregulated gene glutathione S-transferases or 
genes implicated in phenylpropanoid and flavonoid biosynthesis pathway. A microarray based transcriptome analysis in 
root and leaf tissues have revealed 4,815 differentially expressed genes, out of which 88 and 52 genes were found to be 
differentially expressed in root and leaf tissues respectively. Another microarray based transcript study has confirmed a 
set of 109,210 and 386 genes expressed differentially in drought, cold and salinity stress respectively (Mantri et al. 2007). 
Advances in sequencing technologies in combination with improved computations tool have facilitated the development 
of gene expression atlas in different pulse crops such as common bean (O’Rourke et al. 2014) pigeonpea (Pazhmala et 
al. 2017) and chickpea (Kudapa et al. 2018).

GEMOMIC BREEDING METHODS IN PULSE CROP IMPROVEMENT

Marker-assisted backcrossing 
Among various GAB (Varshney et al. 2021) approaches, marker assisted backcrossing (MABC) has been used to 

introgress major-effect QTL controlling a variety of biotic and abiotic stresses such as disease resistance and drought 
tolerance. For instance, Geletu, a drought tolerant line derived from MABC scheme in chickpea was released for 
cultivation in Ethiopia. The QTL hotspot genomic region harbouring a variety of drought tolerance associated traits was 
introgressed into an Indian chickpea cultivar from the donor ICC 4958 (Varshney et al. 2013c). Similarly, QTL controlling 
resistance against Fusarium wilt and Ascochyta blight were introgressed to chickpea cultivar C 214 following MABC 
approach (Varshney et al. 2014c). More recently, fast-track development of drought tolerant ‘Pusa chickpea 10216’ 
was demonstrated by transferring “QTL-hotspot” genomic region from ICC 4958. Development of various molecular 
breeding products in chickpea has been discussed in detail elsewhere (Bohra et al. 2019, Roorkiwal et al. 2020). 

In field pea, application of GAB approach was demonstrated for selection of lodging resistance in early segregating 
generations, and the GAB approach was found to be more efficient than conventional phenotypic selection (Zhang 
et al. 2006). Other traits that have been introgressed in field pea using GAB approach include Aphanomyces root rot 
resistance (Hamon et al. 2013), frost tolerance (Lejeune-Hénaut et al. 2008, Tayeh et al. 2015b). Advanced backcross-
QTL (AB-QTL) proposed by Tanksley and Nelson (1996), facilitates variety development and QTL introgression in a 
simultaneous manner. In field pea, an AB population was made by back crossing (BC2F6) an accession ATC 113 to a 
susceptible cultivar Pennant (Aryamanesh et al. 2012). Similar examples were reported in common bean for agronomic 
traits (Blair et al. 2006). Some examples of fast-track trait introgression using MABC/MAS approaches in pulse crops 
are provided in Table 4.

Table 3. Gene expression atlas built in some pulse crops 

Crop Resource Number of genes catalogued References
Chickpea Cicer arietnium gene expression atlas (CaGEA) 32,873 Kudapa et al. (2018)
Pigeonpea Cajanus cajan gene expression Atlas (CcGEA) 28,793 Pazhmala et al. (2017)
Common bean Phaseolus vulgaris gene Expression Atlas (Pv GEA) 11,010 O’ Rourke et al. (2014)
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Genomic selection 
In the post-NGS era, the availability of references genome sequence has provided the breeders with a variety 

of genome-wide DNA markers that are indispensable to effective plant selections and GAB. Several high-density 
genotyping systems are now available to assay a large number of genotypes in a cost and time-efficient manner 
(Rasheed et al. 2017). The development of cost-effective and customized genotyping platforms are all the more 
relevant in view of the concurrent refinements in plant breeding methods. For instance, genomic selection (GS) has 
recently emerged as a new breeding tool to improve genetic gain of plant breeding programs (Crossa et al. 2017). 
The genetic gain per unit time can be predicted based on the breeder’s equation (Moose and Mumm 2008). The 
genetic gain of a breeding program can be enhanced by improving selection intensity (i) and selection accuracy (r) 
while shortening the length (l) of the breeding cycle (Santantonio et al. 2020, Sinha et al. 2021). The application 
of GS has shown encouraging results in legume crops. In chickpea, Roorkiwal et al. (2016) performed phenotyping 
of 320 elite breeding lines genotyped with 3,000 DArT Seq markers at two different locations, and the accuracies 
of GS models ranged from 0.13 (seed yield) to 0.91 (100-seed weight). A later GS study in chickpea by the same 
group incorporated G×E interactions into GS prediction models and also compared the impact of population 
structure and different genotyping platforms (GBS and DArT-Seq) on prediction accuracies (Roorkiwal et al. 2018b). 
In field pea, Tayeh et al. (2015c) reported prediction accuracies in the range of 0.65 (days to flowering) and 0.83 
(1000-seed weight) based on the GS study involving 339 accessions genotyped using 13.2K SNP array. The study 
reported higher effect of size and composition of the training population on prediction accuracies than that of the 
GS prediction models and genotyping platforms. Another GS study performed on 215 field pea lines (assayed by 
the GBS) reported 0.56 as the highest prediction accuracy for ascochyta blight resistance. GBLUP and RKHS models 
performed better than the other models employed (RR-BLUP, Bayes A, Bayes B, Bayes C, BRR) (Carpenter et al. 2018). 
Recently, Annicchaiarico et al. (2019) applied genomic prediction approach for improving grain yield, flowering 
initiation, lodging susceptibility, seed weight and winter plant survival for three environments, with GS models 
trained on 306 interconnected RILs. The study established the superiority of GS over the phenotypic selection. 
The utility of WGRS data in predicting hybrid performance and identification of high-yielding heterotic pattern has 
been demonstrated in pigeonpea (Saxena et al. 2021). The genome-wide predictions have been elucidated to be 
crucial for long term gain in hybrid breeding.

Table 4. Some examples of fast-track trait introgression using MABC/ MAS in some pulse crops

Crop Donor Parent Recipient Trait DNA Marker References
Chickpea Vijay Pusa 256 Resistance against Fusarium wilt (foc2) SSR Pratap et al. (2017)
Chickpea WR 315 C 214 Resistance against Fusarium wilt (foc1) SSR Varshney  et al. (2014c)
Chickpea ILC 3279 C 214 Ascochyta blight (ABQTL-I and ABQTL-II) SSR Varshney et al. (2014c)
Common bean  AND 277 Rudá Resistance against angular leaf spot STR Gonçalves-Vidigal et al. (2011)
Common bean AND 277 IAC-Milênio  Resistance against angular leaf spot SNP De Almeida et al. (2021)
Common Bean BAT93 Jalo EEP558 Resistance against anthracnose and rust SSR, RGA, AFLP Hanai et al. (2010)
Common Bean Bunsi Midland Resistance against white mold AFLP, RAPD Ender et al. (2008)
Common Bean R31-83 Orion Resistance against white mold SNP Vasconcellos et al. (2017)
Common Bean G21212 BAT 881 Drought tolerance RFLP,SSR,SNP Diaz et al. (2018)
Lentil L. odemensis  L. culinaris cv. alpo Ascochyta blight resistance SNP Polanco et al. (2019)
Lentil ILL2024 Cassab Boron toxicity tolerance SNP Kaur et al. (2014)
Lentil L 4149 PL 8 Rust resistance SRAP , SSR Dikshit et al. (2016)
Lentil PDL-1 and PSL-9 L-4147 and L-4076 Salt Tolreance SSR Singh et al. (2020)

Pea 00-2067 Reward Resistance against Aphanomyces root rot 
(ARR) SSR, SNP Wu et al. (2021)

Pea Eritreo Messire Resistance against powdery mildew SCAR, RAPD Cobos et al. (2018)
Pea 955180 Majoret Resistance against powdery mildew SSR Ek et al. (2005)
Pea JI2480 Lincoln Resistance against powdery mildew RAPD, SSR Katoch et al. (2010)
Pea 955180 Majoret Resistance against powdery mildew SSR Ek et al. (2005)
Pea Parafield  Kaspa Salt tolerance SNP Leonforte et  al. (2013)
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Rapid generation turnover (RGT) technologies
As mentioned in the previous section, approaches that reduce the length of the breeding cycle can contribute to 

accelerate the rate of genetic gain. These breeding protocols are collectively termed as speed breeding (SB). From the 
breeder’s equation, the response to selection shows an inverse relation with the length of the breeding cycle (Moose and 
Mumm 2008). Hickey et al. (2019) have discussed the benefits of SB using artificial lighting and other rapid generation 
advancement (RGA) technologies with other modern breeding tools (genome editing, high-throughput phenotyping 
and GS) to accelerate the yield gains. The study by Watson et al. (2019) has demonstrated a considerable reduction in 
the breeding cycle time (up to 6 generation in a year) of cool season legumes such as chickpea and field pea (Watson 
et al. 2019). A more recent study by Samineni et al. (2020) applied RGA protocol on six chickpea accessions, two each 
from early, medium and late categories and the authors reported production of seven generations in a single year. 
Earlier in pea, RGA protocol (20-hr photoperiod, 21/16 ligh/dark, hydroponic system etc.) accelerated the development 
of mapping population of pea by 30–45 days per generation faster over standard single seed descent method (Mobini 
and Warkentine 2016). Exogenous application of plant growth regulators such as benzylaminopurine (BAP; cytokinin) in 
combination with cold treatment (8/4 °C day/night for 2 days) considerably reduced the generation time in faba bean 
through improving pollen viability and enhanced pod and seed setting (Mobini et al. 2015). 

In pigeonpea, four genotypes from early maturity groups namely, ICPL 4, ICPL 151, ICPL 85024 and ICPL 87093 were 
subjected to RGA protocol under controlled conditions, and four generations were obtained in 349, 367, 313 and 338 
days, respectively (Saxena et al. 2017). The study demonstrated shortening of generation time by combining harvesting 
of immature seeds and single pod descent method. Another SB-based strategy by Saxena et al. (2019) employed early 
maturating photoperiod-insensitive genotypes, and showed its potential to deliver new early maturing cultivars with 
the successful reduction of up to 4-5 years. SB recipes combined with single seed descent and MAS or GS will provide 
greater genetic gains over conventional methods of plant breeding (Varshney et al. 2021).

Haplotype-based breeding
While the concept of haplotype assembly was proposed by Bevan et al. (2017), based on haplo-pheno analysis, 

superior haplotypes were identified in rice (Abbai et al. 2019) and pigeonpea (Sinha et al. 2020). Based on these superior 
haplotypes, Varshney et al. (2020) outline the concept of of haplotype-based breeding for faster development of designer 
cultivars. This approach has tremendous advantages over MABC, which takes years and generations to transfer superior 
genes, and the process creates bottleneck effects and reduction of genetic diversity. Developing improved cultivars for 
future climate will require assembling gene(s) scattered throughout the genome, and efficient accumulation of such 
gene(s) will rely on approaches that exploit haplotypes. Haplotype-based breeding aimed at transferring superior 
haplotypes underlying genetic variations that are in strong linkage disequilibrium (LD) with the candidate genomic 
regions associated with the traits of interest (Varshney et al. 2021). 

To accelerate future crop breeding, breeders need to shift from traditional DNA marker systems to haplotypes and 
pyramid them into a variety, opening doors to transfer novel genetic diversity from wild species, landraces and diverse 
accessions. More recently, the haplotype-based approach has been implemented in pigeonpea. For instance, Sequencing 
data of 292 accessions were mined to find superior haplotypes for 10 drought-responsive candidate genes (Sinha et al. 
2020). Total five genes showed positive linkage disequilibrium for the seven drought responsive traits. A haplo-pheno 
analysis targeting candidate genomic regions/genes of association analysis revealed the superior haplotypes viz., C. 
cajan_23080-H2, C. cajan_30211-H6, C. cajan_26230-H11 and C. cajan_26230-H5 for plant traits that control drought 
response of pigeonpea. Identification of haplotypes creates novel avenues to tailor future cultivars harnessing growing 
genome-wide sequence information and historical phenotypic records (Varshney et al. 2021). 

FINAL CONSIDERATIONS

Pulses are crucial to provide affordable protein to growing human population worldwide. The pace of genetic 
improvement of pulses has lagged behind in comparison to cereal crops. Nevertheless, remarkable success has been 
made in recent years in developing modern genomic tools and breeding approaches that underpin genetic improvement 
of pulses. Trait discovery has been revolutionized following sequencing of multiple genomes, and elucidation of crop 
evolution and breeding history has offered novel breeding targets to hasten crop breeding progress. Improved pulses 
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cultivars resulting from GAB are now ready for cultivation in famers’ field. Initial examples of application of GS and 
SB for enhancing generation turnover in pulses breeding programs are encouraging, and enhanced adoption of these 
modern approaches will be crucial to improve the rate of genetic gain in pulses breeding programs. Besides SB and GS, 
application of HBB will pave the way for next generation breeding in pulses for the rapid delivery of ideal cultivars that 
adequately cater to the future needs in a timely manner.
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