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Abstract: The improvement of superior wheat cultivars depends on the identi-
fication of promising segregating populations to derive superior lines. A lattice 
model (8×8) involving 56 F2 populations and eight parents was conducted in 
the 2020 cropping season, and grain yield per plant was evaluated for every 
F2 population, with further analysis of the population potential by Jinks and 
Pooni method via REML/BLUP. A total of 5,410 F2 plants were evaluated in this 
study. The results showed that the use of genetic variance associated with 
the individual genotypic value (BLUP) was superior compared with the use of 
variance and traditional phenotypic values. The F2 populations, CD 1303/BRS 
254, CD 1303/Tbio Duque, CD 1303/Tbio Ponteiro, BRS 264/Tbio Aton, Tbio 
Ponteiro/Tbio Aton, and Tbio Sossego/CD 1303 had the highest likelihood of 
deriving superior lines.
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INTRODUCTION

Brazil has a wheat deficit of approximately six million tons (CONAB 2021). 
However, the country has the potential to expand its wheat production, especially 
in the Brazilian Cerrado region (Pasinato et al. 2018); hence, cultivars adapted to 
the climatic conditions of that region need to be developed (Pereira et al. 2019).

One of the challenges of breeding programs is the formation of segregating 
populations with the potential to derive superior lines since they depend on 
the concentration of favorable alleles in the parents involved (Fasahat et al. 
2016) and on the early evaluation of the populations obtained, which allows 
selection of those with potential and discarding the least promising populations, 
saving time and resources from the breeding program. The method by Jinks 
and Pooni (1976) is a possible tool for evaluating the potential of segregating 
populations in early generations in soy (Lima et al. 2012), beans (Rocha et al. 
2013), and rice (Morais Júnior et al. 2015).

However, one of the challenges of the method proposed by Jinks and Pooni 
(1976) is that it estimates variances based on the evaluation of individual plants, 
which can culminate in negative variance estimates (Pimentel et al. 2013). 
Considering this problem, the restricted maximum likelihood (REML) method 
can be an alternative to the least-squares method. For variance component 
estimates, the REML method is translation-invariant; it does not provide 
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variance component estimates outside the parametric space and does not provide biased estimates. Additionally, the 
best linear unbiased prediction (BLUP) method provides the genotypic value of individual plants even under unbalanced 
conditions, based on the mean performance of the population and their respective parents (Resende and Alves 2020).

In that context, the REML/BLUP method has been extensively used in studies of quantitative genetics (Silva et al. 
2013), genetic diversity (Casagrande et al. 2020), and diallel analysis (Laviola et al. 2018), as well as the method by Jinks 
and Pooni (Morais Júnior 2014). However, the analysis and selection of promising segregating wheat populations using 
the variance components of REML and the genetic effects of BLUP using the methodology by Jinks and Pooni (1976) to 
derive superior lines has not been documented.

Therefore, the objectives of this study were to evaluate the genetic potential of 56 tropical wheat F2 populations 
in 5,410 plants, derive superior lines, and select plants with superior performance through the method by Jinks and 
Pooni (1976) via REML/BLUP.

MATERIAL AND METHODS

Crossing of F1 populations
To obtain the experimental material, eight tropical wheat cultivars were crossed in a complete diallel crossing scheme. 

Cultivars from three different breeding programs were selected for good agronomic performance variables, including 
grain yield, health, and plant architecture, combined with quality traits of wheat such as gluten strength, in addition to 
being adaptable to cultivation in the Brazilian Cerrado region. The cultivars used were: CD 1303 (Cooperativa Central de 
Pesquisa Agrícola-COODETEC), BRS 254, BRS 264, and BRS 394 (Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA), 
and four cultivars from Biotrigo Genética (Tbio Aton, Tbio Duque, Tbio Ponteiro, and Tbio Sossego). Hybridization was 
conducted between August and October 2019. In February 2020, F1 seeds obtained from each crossing were multiplied 
to generate the F2 populations. Both activities were conducted in the greenhouse at the Department of Agronomy at 
the Federal University of Viçosa, Minas Gerais State, Brazil.

Field experiment
A total of 5,410 F2 plants were evaluated in the field during the 2020 winter cropping season, in the field at the 

Department of Agronomy of the Federal University of Viçosa (lat 20º 45′ 14″ S, long 42º 52′ 55″ W, and altitude of 648 
m), Viçosa, Minas Gerais State, Brazil. The 56 F2 combinations and 8 parents were evaluated in the field using a lattice 
model (8 × 8) with 2 replicates. The experimental plot consisted of three rows of 3 m with an intra-row spacing of 0.2 
m. Ten seeds were sown per meter following the pedigree method by McVetty and Evans (1980). In each plot, individual 
plants were harvested, threshed, and the grain yield per plant (g pl-1) was determined.

The experiment was conducted under sprinkler irrigation. Basic and cover fertilization were applied for soil correction 
based on soil chemical analyses and according to the crop`s nutritional needs. Control of weeds, insects, and pests was 
done using chemicals according to the recommendations for wheat cultivation in Brazil (Embrapa 2020).

Statistical analysis
Initially, the 56 density plots were evaluated using the phenotypic data and considering each F2 hybrid population to 

visualize the distribution behavior of the trait on grain yield per plant. The following statistical parameters were calculated 
from the data: number of observations (number of pl, count); maximum, minimum, and mean value in g pl-1; standard 
deviation (SD); coefficient of skewness according to Bowley (1920) (SK); and kurtosis (K).

The data for individual plants from the 56 populations and 8 parents were submitted to mixed model analysis to 
estimate genetic parameters via restricted maximum likelihood (REML) and predict genotypic values through the best 
linear unbiased prediction (BLUP). Initially, the following model was used to estimate the parameters for each population:

(1)                                             y = Xβ + Z1μ1 + Z2μ2 + e1 

where y is the vector of the phenotypic data observed, X and β are the incidence matrix and the corresponding vector 
of fixed effects, respectively (general mean of the crossing in each sub-block), Z1 and Z2 are the matrices of random 
effects, μ1 is the vector of random effects of crossing μ1 ~ N(0, Iσ2

μ1
), μ2 is the vector of random effects of the plot μ2 ~ 
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N(0, Iσ2
μ2

), and e1 is the vector of residual random effects e ~ N(0, Iσ2
e).

Subsequently, the following model was used to fit the parents:

(2)                                                          y = Xβ + Z3μ3 + Z4μ4 + e2

where y is the vector of phenotypic data of the parents, β is the fixed effect vector of the general mean of the parents 
in each sub-block, μ3 is the vector of random genetic effects of the parents μ3 ~ N (0, Iσ2

μ3) μ4 is the vector of random 
effects of the plot μ4 ~ N (0, Iσ2

μ4), and e2 is the vector of residual random effects e ~ N(0, Iσ2
e). The terms X, Z3, and Z4 

constitute the incidence matrices of the aforementioned effects.

Finally, the individual genetic values of plants (BLUP) were obtained using the following model:

(3)                                                         y = Xβ + Z5μ5 + Z6μ6 + e3

where y is the vector of the phenotypic data observed, β is the vector of replicate effects (fixed), μ5 is the vector of the 
genotypic random effects of genotypes (populations and parents) μ5 ~ N (0, Iσ2

μ5), μ6 is the vector of the plot random 
effects and μ6 ~ N (0, Iσ2

μ6), and e3 is the vector of residual random effects e ~ N(0, Iσ2
e). X, Z5 and Z6 are the incidence 

matrices of the respective effects.

The mean genetic variance of the crossing (σ2
μ1) obtained by Model 1 is given by

(4)                                                         σ̂2
μ1 = (1 – FST)σ̂

2
a0

where FST is the inbreeding coefficient for the generation of populations, and σ̂2
a0 is the original additive genetic variance 

of the parent population, given by σ̂2
a0 = σ̂2

p/2, where σ̂2
p is the genetic variance of the parents. 

Heritability (h ̂2) was estimated by the following equation:

 (5)                                                        h ̂2 = σ̂2
μ1/ σ̂2

e1

where, σ̂2
e is the residual variance.

After obtaining the variance and genotypic values (BLUPs), the probability of extracting line (P) from each population 
was estimated using the method by Jinks and Pooni (1976), with the probability corresponding to the direct area of 
a given value of Z in the abscissa of the normal distribution. Then, measured through the Z table that contains the 
probabilities P(Z ≥ z) of the standard normal distribution, with Z being obtained by:

(6)                                                                                           Z = 
L � – F �

ni

σ2̂
g

where L � corresponds to the standard genotypic value mean, corresponding to the mean grain yield per plant of the 56 
F2 populations evaluated plus 1.5 × σg, that is, 12.14 g pl-1, obtained through equation (3); σg is the genotypic standard 
deviation of the 56 F2 populations obtained through equation (3); F �ni is the mean grain yield per plant estimated for each 
F2 population, which corresponds to the mean of all possible lines in the F∞ generation in a model without dominance, 
as long as they are conducted without selection; and σ̂2

g is the estimate of genetic variance between plants of the F2 
generation of each population individual, obtained through Equation (2).

In sequence, out of the F2 populations that obtained a probability (P) equal to or greater than 45%, plants with a 
genotypic value higher than the mean of the populations previously selected were selected. Analyses were performed 
using the software Selegen (Resende 2016) and ggplot2 (Wickham 2016) package in the R (R Core Team 2020) environment.

RESULTS AND DISCUSSION

Descriptive analysis
The descriptive statistics of the 5,410 plants of the F2 populations based on phenotypic data are shown in Table 1. 

The number of plants evaluated ranged from 76 to 130, depending on the final stand of the plants at the end of the crop 
cycle. The highest yield (35.33 g pl-1) was recorded in an F2 plant originating from the crossing of BRS 254/Tbio Ponteiro. 
The phenotypic mean of the F2 populations was 9.81 g pl-1, which was higher than the 5.72 g pl-1 reported by Pimentel 
et al. (2010) when measuring yield in individual F3 plants of tropical wheat.
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Table 1. Descriptive analysis containing number of plants evaluated (nº of pl), maximum (Max), minimum (Min) and mean phenotypic 
values, standard deviation (SD), skewness and kurtosis for the production per plant (g pl-1) of 56 F2 populations of tropical wheat

Crossings nº of pl Max Min Mean SD Skewness Kurtosis
CD 1303/BRS 254 97 29.330 3.200 12.150 5.700 0.226 -0.135
CD 1303/BRS 264 99 20.500 2.980 9.313 3.877 -0.009 -0.019
CD 1303/BRS 394 113 20.590 2.310 9.638 4.164 0.243 -0.535
CD 1303/Tbio Aton 98 31.520 1.270 11.417 5.263 0.125 1.474
CD 1303/Tbio Duque 81 32.270 3.380 12.516 6.025 0.193 1.008
CD 1303/Tbio Ponteiro 108 32.970 2.390 12.106 5.482 0.127 1.476
CD 1303/Tbio Sossego 108 29.410 2.910 11.200 5.385 -0.023 1.929
BRS 254/CD 1303 111 32.510 2.580 10.201 4.658 0.005 4.595
BRS 254/BRS 264 109 18.820 0.890 7.942 3.924 -0.199 -0.206
BRS 254/BRS 394 130 25.490 2.390 9.193 4.835 0.357 1.035
BRS 254/Tbio Aton 99 28.690 1.950 10.398 5.935 -0.062 0.302
BRS 254/Tbio Duque 110 23.690 3.120 9.675 4.098 0.107 0.469
BRS 254/Tbio Ponteiro 111 35.330 1.730 9.979 5.515 -0.133 4.208
BRS 254/Tbio Sossego 97 29.720 1.940 9.122 4.756 0.267 2.839
BRS 264/CD 1303 101 28.860 1.600 11.696 5.553 0.149 0.614
BRS 264/BRS 254 105 24.120 0.740 9.838 5.099 0.258 0.138
BRS 264/BRS 394 115 21.980 3.080 9.278 3.666 0.048 0.466
BRS 264/Tbio Aton 97 25.100 1.750 11.916 5.695 0.094 -0.610
BRS 264/Tbio Duque 87 28.710 2.960 10.052 5.681 0.255 1.569
BRS 264/Tbio Ponteiro 66 23.490 1.880 10.394 5.067 0.072 -0.272
BRS 264/Tbio Sossego 86 23.740 1.200 8.993 4.448 0.121 0.978
BRS 394/CD 1303 112 22.800 2.210 8.324 4.181 0.246 2.415
BRS 394/BRS 254 96 22.320 1.260 8.847 4.412 0.244 0.320
BRS 394/BRS 264 97 21.210 1.540 8.448 4.096 0.214 0.675
BRS 394/Tbio Aton 63 31.250 2.160 10.178 5.866 0.434 1.941
BRS 394/Tbio Duque 97 26.300 2.050 9.565 4.444 -0.105 1.382
BRS 394/Tbio Ponteiro 92 26.610 0.470 8.607 4.616 -0.057 2.027
BRS 394/Tbio Sossego 98 20.390 0.540 8.636 4.151 0.155 -0.102
Tbio Aton/CD 1303 113 26.970 1.750 10.811 5.262 -0.117 0.311
Tbio Aton/BRS 254 102 24.050 1.470 10.872 5.469 0.108 -0.381
Tbio Aton/BRS 264 101 28.320 1.050 8.966 4.840 0.022 2.491
Tbio Aton/BRS 394 100 28.030 0.670 7.744 5.275 0.227 1.938
Tbio Aton/Tbio Duque 49 29.960 1.870 14.111 7.238 0.020 -0.782
Tbio Aton/Tbio Ponteiro 110 26.630 2.990 9.920 4.466 0.264 0.789
Tbio Aton/Tbio Sossego 67 27.170 2.590 11.507 4.866 0.070 0.574
Tbio Duque/CD 1303 116 24.590 1.270 8.515 4.826 0.080 0.928
Tbio Duque/BRS 254 111 30.070 1.310 8.965 4.733 0.063 2.875
Tbio Duque/BRS 254 118 19.710 1.640 8.840 4.227 0.287 -0.208
Tbio Duque/BRS 394 64 24.720 2.760 11.158 5.178 -0.167 -0.052
Tbio Duque/Tbio Aton 108 27.090 1.810 9.256 4.306 0.194 1.478
Tbio Duque/Tbio Ponteiro 98 24.320 0.810 9.181 4.429 0.100 0.387
Tbio Duque/Tbio Sossego 105 21.340 2.100 9.291 3.930 0.027 0.024
Tbio Ponteiro/CD 1303 110 29.750 0.460 11.467 6.271 0.169 0.335
Tbio Ponteiro/BRS 254 26 12.350 0.200 4.846 3.815 0.543 -1.164
Tbio Ponteiro/BRS 264 113 20.730 1.580 9.069 4.021 -0.117 0.558
Tbio Ponteiro/BRS 394 99 26.250 2.060 9.252 5.509 0.243 0.296
Tbio Ponteiro/Tbio Aton 81 36.380 0.230 11.770 7.419 0.116 1.779
Tbio Ponteiro/Tbio Duque 95 22.070 1.410 9.464 4.856 0.244 -0.078
Tbio Ponteiro/Tbio Sossego 93 34.410 2.210 10.225 5.932 0.176 2.239
Tbio Sossego/CD 1303 103 31.820 0.750 11.977 5.680 -0.072 0.765
Tbio Sossego/BRS 254 103 21.060 1.380 8.971 4.427 0.124 0.128
Tbio Sossego/BRS 264 90 32.220 1.630 9.584 5.431 0.037 3.500
Tbio Sossego/BRS 394 89 25.120 1.120 7.944 4.515 0.137 2.140
Tbio Sossego/Tbio Aton 85 26.220 1.080 8.707 4.875 0.077 0.840
Tbio Sossego/Tbio Duque 102 27.000 0.840 8.958 5.387 0.216 1.041
Tbio Sossego/Tbio Ponteiro 76 28.490 1.600 8.616 5.234 0.033 2.120
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The phenotypic distribution patterns were verified for skewness and kurtosis (Table 1). F2 populations showed 
almost normal patterns; the distributions showed weak skewness both on the right (0 < SK < 1) and left (−1 < SK < 0), 
although with stronger skewness to the right, that is, with a longer tail on the right, with values concentrated on the 
left of the mean. The highest skewness value on the right was observed in the BRS 394/Tbio Aton population (0.43). 
Most populations presented kurtosis characterized as platykurtic (K < 3), that is, the phenotypic data of the populations 
were less concentrated around the mean. Only the BRS 254/CD 1303, BRS 254/Tbio Ponteiro, and Tbio Sossego/BRS 
264 presented leptokurtosis (K > 3). With the aim of genetic improvement, populations with asymmetric curves to the 
left (concentration of individuals above the average) were sought to increase the probability of deriving superior lines, 
highlighting populations with higher values of asymmetry on the left, including BRS 254/BRS264, BRS 254/Tbio Ponteiro, 
Tbio Aton/CD 1303, and Tbio Duque/BRS 394.

Based on Figure 1, it is possible to visualize the variability of the distribution patterns of F2 populations of tropical 
wheat between the F2 generations and their reciprocals. The visualized variability indicates that the distribution pattern 

Figure 1. Pattern of density distribution of grain yield per plant in 56 tropical wheat F2 populations. F2: crosses and REC: reciprocal.
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between F2 populations and their respective reciprocals are similar, with greater visual discrepancies present in the BRS 
254/Tbio Ponteiro, BRS 264/Tbio Aton, BRS 394/Tbio Duque, CD 1303/BRS 394, CD 1303/Tbio Duque, and Tbio Aton/
Tbio Ponteiro populations. Such variation in performance can be indicative of a reciprocal effect, with the consequence 
for the adoption of the cultivar to be used as the maternal or paternal parent (Rocha et al. 2014); however, it is based 
on visual verification of performance through graphical analysis, requiring a significance test for the reciprocal effect. 
These effects may be due to the nuclear genes (maternal effect) and cytoplasmic genes (non-maternal effect) (Barata 
et al. 2019). Easterly et al. (2020), who studied 650 F1 combinations of wheat, reported an insignificant reciprocal effect 
in grain yield. Pelegrin et al. (2020), who studied F2 populations of wheat with a partial diallel crossing design (5 × 5), 
reported a significant reciprocal effect for the trait grain weight per plant.

Jinks and Pooni methodology
The probability of extracting superior lines was calculated using the method by Jinks and Pooni (1976) (Table 2). The 

probability ranged from 0.00 (Tbio Ponteiro/BRS 254) to 49.64 (CD 1303/Tbio Ponteiro). Six populations (CD 1303/BRS 
254, CD 1303/Tbio Duque, CD 1303/Tbio Ponteiro, BRS 264/Tbio Aton, Tbio Ponteiro/Tbio Aton, and Tbio Sossego/CD 
1303) recorded probabilities greater than 45%. These populations stood out for the extraction of superior lines with 
productive potential. The Jinks and Pooni (1976) method has proven its efficiency in other studies involving grain crops, 
such as rice (Morais Júnior et al. 2015) and beans (Rocha et al. 2013).

Pimentel et al. (2013) highlighted that when estimates of genetic components are obtained through evaluations 
in individual plants, the results are biased due to the high volume of errors associated with negative genetic variance 
estimates being possible. Furthermore, errors associated with measurements on individual plants are inevitable as they 
are not homogeneous at the time of sampling, and each plant can interact exclusively with the environment (Westneat 
et al. 2015). In this context, techniques such as the REML/BLUP method that estimate the genetic values of individual 
plants and minimize tendencies should be adopted.

The REML/BLUP method stands out for its ability to provide the genetic value (BLUP) of each plant even under 
unbalanced conditions by assuming central estimates of genetic value, that is, normally distributed with the true genetic 
value being central, making it an unbiased predictor. Thus, selection between and within populations is allowed to 
increase the prediction success. REML, in turn, is translation-invariant, besides being iterative, providing estimates of 
non-negative variance components for restricting the parametric space, which is an unbiased method once a sufficient 
number of observations are used (Resende and Alves 2020). Thus, the REML/BLUP methodology is ideal for estimating 
genetic parameters and predicting genetic values. The genetic variance estimated in the present study did not present 
negative values (Table 2), that is, within the parametric space, differently from what occurs in contrast to the methodology 
by Jinks and Pooni (1976), based on phenotypic data using the least-squares technique. Previous studies have reported 
the superiority of biometric techniques based on the REML/BLUP methodology compared to those based on least 
squares, such as selection indexes (Entringer et al. 2016), diallel analysis (Laviola et al. 2018), and genetic diversity 
(Casagrande et al. 2020).

Selection of superior plants
The genotypic value (BLUP) of plants above the mean of six F2 populations of tropical wheat selected by the method 

by Jinks and Pooni (1976) (P > 45%) are shown in Figures 2 and 3. The mean of genetic values of the six selected 
populations was 12.81 g pl-1 which was 30.05% more than the means of the other F2 populations and 87.83% more 
than the means of the parents. The CD 1303/Tbio Duque population had 55 plants with means higher than 12.81 g pl-1, 
with the population with the highest number of individuals above the mean, followed by the CD 1303/Tbio Ponteiro 
population with 40 individuals with values above the mean. The other populations had 39 (CD 1303/BRS 254) and 
31 (Tbio Ponteiro/Tbio Aton) individuals above the mean. Although the selection of segregating populations in the 
F2 generation should be treated sparingly because of previously reported heterosis effects on productivity (Bailey 
et al. 1980, Jiang et al. 2017), these populations have promising performances when analyzing the Jinks and Pooni 
probability (P%) value together with their genotypic means. The greater number of selected populations in which the 
cultivar CD 1303 (four populations) participated as parents regardless of the large number of descendants selected 
in these populations are indications that this parent has a high number of favorable alleles for the grain yield trait; 
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Table 2. Average genetic value per plant (g pl-1), genetic variance (σ̂2
g), heritability (h ̂2

 ), Z value for L � = 12.14 g pl-1 and their respective 
probabilities of extraction of superior lines (P, %), for the grain production trait per plant of tropical wheat F2 populations

Parents nº of pl Mean σ ̂2g h ̂2 Z P (%)1

CD 1303 15 9.198 1.137 - - -
BRS 254 15 5.707 1.290 - - -
BRS 264 15 8.781 0.990 - - -
BRS 394 15 4.004 0.494 - - -
Tbio Aton 15 6.141 1.650 - - -
Tbio Duque 15 7.189 8.104 - - -
Tbio Ponteiro 15 7.664 1.332 - - -
Tbio Sossego 15 5.893 0.734 - - -
Mean 15 6.822 - - - -

Crossings Mean σ ̂2g h ̂2 Z P (%)1

CD 1303/BRS 254 12.108 3.938 0.125 0.020 49.202
CD 1303/BRS 264 8.717 1.976 0.125 2.440 0.734
CD 1303/BRS 394 9.619 2.266 0.125 1.680 4.648
CD 1303/Tbio Aton 11.417 3.594 0.125 0.380 35.197
CD 1303/Tbio Duque 12.239 4.725 0.125 -0.050 48.006
CD 1303/Tbio Ponteiro 12.307 3.699 0.119 -0.090 49.642
CD 1303/Tbio Sossego 11.073 3.636 0.125 0.560 27.877
BRS 254/CD 1303 10.243 2.836 0.124 1.130 12.924
BRS 254/BRS 264 7.908 2.071 0.124 2.940 0.164
BRS 254/BRS 394 9.177 3.033 0.125 1.700 4.457
BRS 254/Tbio Aton 10.837 4.081 0.125 0.650 25.785
BRS 254/Tbio Duque 9.621 2.683 0.124 1.540 6.178
BRS 254/Tbio Ponteiro 10.082 3.836 0.125 1.050 14.686
BRS 254/Tbio Sossego 9.130 2.836 0.125 1.790 3.673
BRS 264/CD 1303 11.673 3.908 0.125 0.240 40.517
BRS 264/BRS 254 9.820 3.294 0.125 1.280 10.027
BRS 264/BRS 394 9.276 1.774 0.125 2.150 11.578
BRS 264/Tbio Aton 11.912 4.146 0.125 0.110 45.621
BRS 264/Tbio Duque 10.638 4.186 0.125 0.730 23.270
BRS 264/Tbio Ponteiro 10.394 3.171 0.113 0.980 16.354
BRS 264/Tbio Sossego 8.909 2.341 0.125 2.110 1.743
BRS 394/CD 1303 8.422 2.182 0.125 2.520 10.587
BRS 394/BRS 254 8.938 2.420 0.125 2.060 1.970
BRS 394/BRS 264 8.380 2.131 0.125 2.580 0.494
BRS 394/Tbio Aton 10.104 4.116 0.125 1.000 15.866
BRS 394/Tbio Duque 9.671 2.982 0.124 1.430 7.636
BRS 394/Tbio Ponteiro 8.617 2.669 0.090 2.160 1.539
BRS 394/Tbio Sossego 8.523 2.100 0.125 2.500 0.621
Tbio Aton/CD 1303 10.797 3.626 0.125 0.710 23.885
Tbio Aton/BRS 254 10.872 3.489 0.125 0.680 24.825
Tbio Aton/BRS 264 8.994 2.970 0.125 1.830 3.363
Tbio Aton/BRS 394 7.913 3.394 0.125 2.290 1.101
Tbio Aton/Tbio Duque 13.842 4.688 0.125 -0.790 21.476
Tbio Aton/Tbio Ponteiro 9.916 2.691 0.122 1.360 8.692
Tbio Aton/Tbio Sossego 12.474 2.822 0.125 -0.200 42.074
Tbio Duque/CD 1303 8.670 2.845 0.125 2.060 1.970
Tbio Duque/BRS 254 9.202 3.241 0.125 1.630 5.155
Tbio Duque/BRS 254 8.858 2.769 0.125 1.970 2.442
Tbio Duque/BRS 394 11.694 3.544 0.125 0.240 40.517
Tbio Duque/Tbio Aton 9.265 2.905 0.125 1.690 4.551
Tbio Duque/Tbio Ponteiro 9.034 2.700 0.105 1.890 2.938
Tbio Duque/Tbio Sossego 9.283 2.487 0.125 1.810 3.515
Tbio Ponteiro/CD 1303 11.459 5.083 0.124 0.300 38.209
Tbio Ponteiro/BRS 254 4.675 1.370 0.107 6.380 0.001
Tbio Ponteiro/BRS 264 9.066 2.167 0.102 2.090 1.831
Tbio Ponteiro/BRS 394 9.325 3.625 0.106 1.480 6.944
Tbio Ponteiro/Tbio Aton 11.974 6.685 0.125 0.060 47.608
Tbio Ponteiro/Tbio Duque 9.642 2.878 0.107 1.470 7.078
Tbio Ponteiro/Tbio Sossego 10.099 4.377 0.117 0.980 16.354
Tbio Sossego/CD 1303 11.963 4.107 0.125 0.090 46.414
Tbio Sossego/BRS 254 9.155 2.361 0.125 1.940 2.619
Tbio Sossego/BRS 264 9.689 3.532 0.125 1.300 9.680
Tbio Sossego/BRS 394 7.928 2.531 0.125 2.650 0.403
Tbio Sossego/Tbio Aton 8.747 3.008 0.125 1.960 2.500
Tbio Sossego/Tbio Duque 8.849 4.112 0.125 1.620 5.262
Tbio Sossego/Tbio Ponteiro 8.646 3.165 0.125 1.960 2.500
Mean 9.853

1 highlighted probabilities: selected populations.
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thus, lines from these plants have a high potential for use in tropical wheat breeding programs. For the selection of 
individuals based on the genetic value in this study, the individual BLUP is more reliable than the selection based on 
phenotypic values. This is because BLUP depends on the genetic merit of the population to predict the individual 
genetic value (Cowling 2013).

Using the REML/BLUP methodology proved to be efficient in generating genetic variances within the proposed 
parametric space with consequent reliable individual genetic effects (BLUPi) for the selection of wheat plants in the F2 
generation, considering that the individual evaluation of plants undergoes strong environmental influence, distorting the 
results of previous studies using least squares. Thus, the use of the methodology by Jinks and Pooni (1976) associated 
with the REML/BLUP methodology demonstrates the potential for use in improving wheat, intending to select superior 
individual plants in early generations.

Figure 2. Genotypic value (BLUP) of plants above the mean of three F2 populations of tropical wheat selected by the method of Jinks 
and Pooni (1976). 
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CONCLUSIONS

The method by Jinks and Pooni (1976), when using the genetic variance of REML with the individual genotypic value 
(BLUP), is an efficient alternative for selecting the most promising populations in tropical wheat.

The F2 populations CD 1303/BRS 254, CD 1303/Tbio Duque, CD 1303/Tbio Ponteiro, BRS 264/Tbio Aton, Tbio Ponteiro/
Tbio Aton, and Tbio Sossego/CD 1303 have the potential to derive superior lines of tropical wheat.
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