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Abstract: Bayesian approaches applied in association studies select regions of 
single-nucleotide polymorphisms, indicating genes with important effects. The 
Bayesian methods differ in terms of the distribution assumed for the marker 
effects. Here, we used the window posterior probability of association to detect 
potential regions. The present study evaluated the efficiency of these methods in 
identifying regions located close to genes. Data were simulated in six scenarios. 
Considering the lack of dominance, BayesA was more efficient in the scenario 
with three QTLs. For scenarios with 10 or 100 QTLs, BayesCπ and BayesDπ were 
more efficient according to the false positive rate and detection power. Consid-
ering the presence of dominance, all methods were similar in the scenario with 
three QTLs, except in terms of accuracy. BayesDπ was superior in the scenario 
with 10 QTLs, while BRR was more efficient in the scenario with 100 QTLs. 
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INTRODUCTION

Genome-wide association studies (GWASs) allow for the detection of possible 
associations between quantitative trait loci (QTLs) and traits of interest using 
molecular markers with linkage disequilibrium (LD) (Resende et al. 2014). These 
analyses have prompted important advances in breeding programs by enabling 
the molecular control and biological processes of complex traits (Azevedo et 
al. 2019). However, in many studies, these analyses were performed using a 
single marker. Such analyses with single markers capture a smaller proportion 
of genetic variance and cannot identify complex associations among various 
markers; therefore, analyses of marker groups or select genomic regions are 
recommended (Moore et al. 2010).

The Bayesian methods were used by Fernando et al. (2017) to select 
associated regions. This approach allows for incorporating prior knowledge 
while simultaneously estimating marker effects, which increases the proportion 
of explained genetic variance. For instance, regions can be selected based on 
the Bayes factor, percentage of the recover variance by genomic regions, or 
window posterior probability of association (WPPA). Several criteria of region 
selection using Bayesian approaches were evaluated by Lima et al. (2022) and 
the authors recommended WPPA as the best index. However, in addition to 
the selection criteria, Bayesian models must be compared. 
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Bayesian approach is used for several studies in genetic breeding (Azevedo et al. 2015, Evangelista et al. 2021). 
Specifically, Bayesian methods applied genomic prediction differ regarding the distribution assumed for marker effects, 
and the assumptions encompass the genetic architecture of the desirable trait (Gianola 2013). Specifically, Bayesian 
ridge regression (BRR) assumes a normal distribution with a single variance term for the marker effect. Meanwhile, Bayes 
A assumes a t distribution and different variance terms for each marker (Meuwissen et al. 2001). The Bayesian least 
absolute shrinkage and selection operator (BLASSO) assumes a double exponential distribution and different variance 
terms for each marker (de los Campos et al. 2009). BayesCp assumes a normal distribution with a single variance for 
the p fraction of the markers and no effect for other 1 − p markers (Gianola et al. 2009). BayesDp assumes a normal 
distribution with specific variance for the p fraction of the markers and no effect of the 1 − p fraction of the markers 
(Habier et al. 2011). BayesA*B*, proposed by Azevedo et al. (2015) for genomic prediction, involves BLASSO with a 
t-distribution; however, it can also be used in the context of the association.

To this end, the present study compared different Bayesian methods regarding their efficiency in selecting and 
detecting regions within or close to genes associated with the desirable traits. Specifically, we used simulated data for six 
different scenarios (three genetic architectures and two heritability levels, one with and the other without dominance) 
with single-nucleotide polymorphisms (SNPs) groups in non-overlapping regions.

MATERIAL AND METHODS

Simulated data
The simulated data scenarios were performed using the R package AlphaSimR (Gaynor et al. 2021), with 10 replicates 

each and 10 burn-in cycles. The simulated genome consists of 12 chromosome pairs for a hypothetical plant species and 
an F2 population with 1,000 individuals. The diploid genome assumes that all chromosomes were of equal size with a 
genome length of 12 Morgans. Marker density was simulated by assigning 250 SNPs to each chromosome. Quantitative 
traits were simulated considering the absence or presence of dominance, mean of 0, and narrow-sense heritability, 
representing traits with high (h2

a = 0.50), moderate (h2
a = 0.30), and low (h2

a = 0.10) heritability. Three genetic architectures 
were generated using 3, 10, and 100 loci controlling the trait, and these QTLs were randomly distributed in the first 10 
chromosomes. The QTL effect was simulated using a normal distribution. The proportion of genetic variation associated 
with the QTL explained by the marker (r2

mq) was calculated using the expression proposed by Goddard et al. (2011). 
Overall, six different scenarios were considered in the analyses: three genetic architectures × two heritability levels, 
one with and the other without dominance (Table 1).

Statistical methods
The additive-dominant model is given by (Meuwissen et al. 2001):

y = 1μ + Wma + Smd + e,

Table 1. Description of scenarios (Sc.) with the proportion of variation in quantitative trait loci (QTL) explained by the SNPs (r2
mq), 

genetic architecture, number of QTLs, narrow-sense heritability (h2
a), dominance heritability (h2

d) and list of statistics related to geno-
typic data: Mean (standard error) of the distance between markers (Dist. in Morgans), maximum of linkage disequilibrium (LD) per 
chromosome (maxLD), distance at which half of the maximum LD value is reached (d), number of regions (NREGIONS), and marker 
number (N) per region and the respective standard errors

Sc. r2
mq Genetic architecture Number of 

QTL h2
a h2

d Dist. maxLD d NREGIONS N

1 0.9998 3 QTL on 12 chromosomes* 3 0.50 - 0.003(0.001) 0.41(0.01) 0.04(0.01) 308.10(1.15) 9.74(1.09)
2 0.9992 1 QTL in each of the 10 chromosomes* 10 0.30 - 0.004(0.001) 0.41(0.01) 0.04(0.01) 304.50(1.49) 9.85(1.10)
3 0.9917 10 QTL in each of the 10 chromosomes* 100 0.10 - 0.002(0.001) 0.40(0.01) 0.04(0.01) 302.80(0.47) 9.91(1.14)
4 0.9998 3 QTL on 12 chromosomes* 3 0.50 0.20 0.003(0.001) 0.50(0.01) 0.03(0.01) 165.70(6.54) 17.87(2.10)
5 0.9992 1 QTL in each of the 10 chromosomes* 10 0.30 0.10 0.005(0.001) 0.50(0.01) 0.03(0.01) 164.60(7.57) 18.23(2.00)
6 0.9917 10 QTL in each of the 10 chromosomes* 100 0.10 0.05 0.004(0.001) 0.50(0.01) 0.03(0.01) 164.11(7.54) 18.15(2.34)

* The last two chromosomes do not have QTL.
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where y is the vector of phenotypes (N × 1, N = number of individuals); μ is the mean; 1 is the vector of the same 
dimension as y, with all elements equal to unity; ma is the vector of the additive effect of markers (n × 1, n = number of 
markers); W (N × n) is the incidence matrix of the additive effect of the markers; md is the vector of the dominant effect 
of the markers with n × 1 dimension; S (N × n) is the incidence matrix of the dominant effect of the markers; e (N × 1) is 
the error vector (e ~ N(0, Iσ2

e) and σ2
e is the error variance); and I is the identity matrix. The marker incidence matrices 

were encoded as shown below (Vitezica et al. 2013).

The data distribution is defined by y|μ, ma, md, σ
2
e ~ N(1μ + Wma + Smd , Iσ

2
e). However, in the Bayesian inference, 

the vectors of unknown parameters of the model are random quantities. Then, the probability distributions are 
assumed for them, which, in this context, are called prior distributions, such as μ ~ N(0, 108); σ2

e ~ve
S2

e χ−2, where ve
S2

e 

χ-2is the scaled inverse chi-squared distribution with the hyperparameters ve and S2
e. In the present study, ve = 5 and  

S2
e = 0.5σ2

y (ve
 + 2), where σ2

y is phenotypic variance (Perez and de los Campos 2014). The parameter vectors ma and md of 
the model, which represent the marker effect vectors, also assumed prior distributions. The different prior distributions 
assumed for the markers effects are suitable for the different Bayesian methods proposed, and the selection of prior 
distributions plays a key role in the type of shrinkage of the estimates of marker effects (Azevedo et al. 2015). 

BRR assumes a normal distribution of the marker effects (additive and dominant), with a mean of 0 and the same 
genetic variance as markers σ2

m(m|σ2
m ~ N(0, Iσ2

m)), which induces a homogeneous shrinkage of estimates. The common 
variance σ2

m assumes a scaled inverted chi-square distribution with the hyperparameters vm and S2
m (σ2

m~vm
S2

m χ−2). In the 
present study, vm = 5 and S2

m = 0.5σ 2
y(vm + 2)

MSW

, where MSW is the sum of sample variances of the columns of W (Perez 

and de los Campos 2014). BayesA assumes a normal distribution of the marker effects (additive and dominant) with a 
mean of 0 and specific genetic variance to the markers σ2

mj(m|σ2
mj ~ N(0, Iσ2

mj)), which induces a different shrinkage for 
each estimate. The specific variance σ2

mj assumes a scaled inverted chi-square distribution with the hyperparameters vm 
and S2

m. In the present study, vm = 5 and S2
m~Gamma(r,s), where s = 1.1 and r = (s − 1)MSW

0.5σ 2
y(vm + 2)

 (Perez and de los Campos 

2014). The marginal prior distribution of the marker effects was t-student. BLASSO assumes a normal distribution of 
the marker effects, with a mean of 0 and a specific genetic variance to the markers τ2

mj σ
2
e (m|τ2

mj σ
2
e ~ N(0, Iτ2

mj σ
2
e)). The 

parameter τ2
mj is assigned an exponential density with the rate parameters λ2

2
 and λ2~Gamma(r,s). In the present study, 

s = 1.1 and r = (s − 1)
2MSW

 (Perez and de los Campos 2014). The marginal prior distribution of the marker effects was double 

exponential. BayesA*B* involves BLASSO with a t-distribution (Azevedo et al. 2015). BayesCπ assumes that the 1 − π 
fraction of the markers has no genetic effect, while the π fraction has genetic effects assuming a mixture normal with 
the common variance σ2

m, m|σ2
m, π~(1 − π) N(0, σ2

m = 0) + πN(0, σ2
m), where σ2

m~vm
S2

m χ−2. For the parameter π is assigned 

the beta prior distribution π~Beta(p0,π0). In the present study, vm = 5, S2
m = 0.5πσ 2

y(vm + 2)
MSW

, p0 = 10, and π0 = 0.5 (Perez and 

de los Campos 2014). BayesDπ assumes that the 1 − π fraction of the markers has no genetic, while the π fraction has 
genetics effects assuming a mixture of normal distribution with the specific variance σ2

mj, m|σ2
mj, π~(1 − π) N(0, σ2

mj = 0) 
+ πN(0, σ2

mj), where σ2
mj~vm

S2
m χ−2 and n π~Beta(p0,π0). In the present study, p0 = 10, π0 = 0.5, vm = 5, and S2

m ~Gamma(r,s), 

where s = 1.1 and r = (s − 1)MSW

0.5πσ 2
y(vm + 2)

 (Perez and de los Campos 2014).

To the evaluation of the Bayesian methods, 320,000 iterations were performed with the Markov chain Monte Carlo 
(MCMC) algorithm, a burn-in period equal to 20,000 interactions, and a selection of 1 in 10 iterations (thinning). For 
convergence analysis, the criteria proposed by Geweke (1992) was used. The computational codes of the methods were 
based on R through GenomicLand visual interface (Azevedo et al. 2019).

Formation of regions
According to Viana et al. (2016), the size of genomic regions can be based on the average LD among markers. Pairwise 

estimates of LD (r2, as measured using the squared correlation of incidence markers) were obtained to determine the 
region size. An LD value is pre-established by the researcher, and the shortest distance that provides this value is used to 
define the size of the region within of chromosome. Otyama et al. (2019) presented that an LD value < 0.20 tend toward 
equilibrium because LD is completely eroded. Resende et al. (2017) used this value to determine region length and 
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claimed that this criterion is commonly used in the literature, together with the half-decay distance, for region formation 
(Rafalski 2002, Vos et al. 2017). The LD values were obtained using the LD.decay function of the R package sommer.

Selection based on WPPA
The window posterior probability of association of regions is based on the proportion of genetic variance explained 

by all markers of each genomic region. The portion of genomic estimated breeding values of individuals in the kth region 
was estimated as g ̂k = Wkm ̂ak

 + Skm ̂dk
, where Wk and m ̂ak

 are the additive marker incidence and estimate of the additive 
effect, respectively, and Sk and m ̂dk

 are the dominant marker incidence and estimate of the dominant effect associated 
with the kth region, respectively. And the genomic variance of the kth region was estimated as σ̂2

gk
 = Var(gk), and the 

proportion of genetic variance explained by the kth region (qk) was defined as qk = σ ̂2
gk

E(σ 2
gk)

, where E(σ2
gk

) = σ 2
g

nr

, where σ2
g 

is the genetic variance of the trait and nr is the number of regions. If qk > 1, the kth region harbors a causative mutation 
(Peters et al. 2012, Bennewitz et al. 2017). WPPA is the ratio of the number of samples with qk > 1 to the total number 
of samples. A grid with threshold values ranging from zero to one was tested.

Measures of comparison
The measures used to compare the Bayesian methods were: (i) accuracy (rg,g ̂): correlation between the simulated 

and estimated genetic values; (ii) false positive rate (FP): portion of the regions detected by the methods but are not 
in LD with the QTL; (iii) detection power (PD): portion of the regions detected by the methods and are in LD with the 
QTL; (iv) percentage of genetic variance recovered by the regions; (v) area under the receiver operating characteristic 
(ROC) curve, i.e., the curve between the false positive rate and detection power (the method that provides the highest 
AUC value is considered more efficient for GWAS) (Lima et al. 2022); and (vi) number of regions detected as associated 
with chromosomes 11 and 12 (without QTLs). An optimal threshold should lead to the smallest distance between the 
point on the ROC curve and the point (FP = 0, PD = 1). The method that presents a lower false positive rate and higher 
detection power, recovers a greater portion of genetic variance, shows a larger AUC, and reports fewer associated regions 
on chromosomes 11 and 12 was considered the most suitable for GWAS. The measure denoted by rank summarizes the 
evaluation criteria applied to facilitate comparison among methods. It represents the sum of ranks of each method for 
each evaluation criterion. Therefore, the lower the sum, the more efficient the method.

RESULTS AND DISCUSSION

Definition of regions
The numbers of regions and markers in each region based on LD decay analysis for all scenarios are presented in 

Table 1. The distance that reached half of the maximum LD value between the markers was used to determine the 
region size (r2 = 0.20). This measure has been used by several authors (e.g., Kim et al. 2007, Lam et al. 2010, Branca et 
al. 2011, Vos et al. 2017). The values obtained considering this threshold were similar across all scenarios. According 
to Vos et al. (2017), this threshold is promising for comparing LD decay among different studies, as it remains constant 
across simulated datasets. In scenarios without dominance (1, 2, and 3), the maximum LD values were slightly lower 
than those in scenarios with dominance. Consequently, shorter distances were obtained, providing more regions with 
fewer markers in each. According to Ge et al. (2018), different LD levels are relevant when dominance is considered. In 
addition, LD levels considered to determine the distances were close to 0.20, which is the commonly used threshold in the 
literature, because with this value, LD is expected to be completely eroded (Delourme et al. 2013, Resende et al. 2017).

Accuracy
Accuracy is not a measure typically presented in genomic association studies. However, since previous studies initially 

used Bayesian methods for genomic prediction, accuracy has become a crucial measure that must be reported. Contrary 
to the works of de los Campos et al. (2012) and Gianola (2013), we detected differences in the accuracy of different 
Bayesian methods, particularly in scenarios with fewer QTLs, in the present study. BRR presented higher accuracy in all 
scenarios, consistent with the report of Azevedo et al. (2015) that G-BLUP is the best prediction method, independent of 
the genetic architecture of the trait. Notably, both G-BLUP and BRR are based on the same infinitesimal model assumption.
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Association Analysis
The results for scenarios without dominance are presented in Table 2. For scenario 1 (with three QTLs), BayesA 

gained prominence. This method simultaneously presented a lower false positive rate, higher detection power, greater 
proportion of variance explained, larger AUC, and fewer associated regions detected on chromosomes 11 and 12, being 
the best method in this scenario. The greater efficiency of BayesA than that of BLASSO, primarily for oligogenic traits, has 
been previously reported by Maturana et al. (2014) across different genetic architectures with simulated data, and it was 
re-confirmed in the present study. The t distribution of BayesA provides sufficiently thick tails that allow for capturing 
genes more easily, with a greater effect than normal and double exponential distributions (Azevedo et al. 2015).

In scenarios 2 and 3, BayesCπ and BayesDπ stood out for their efficiency. These methods allow direct selection of 
markers affecting the trait and detect potential QTL positions according to the frequency of non-null SNPs. According 
to Resende et al. (2014), methods that estimate the value of π to select a group of markers a priori are essential in 
association studies, since most markers are not in LD with QTLs. The advantages of BayesDπ in association studies have 
also been reported by Lima et al. (2022). In these scenarios, another method that stood out was BayesA, presenting 
relevant results, which, together with BayesCπ and BayesDπ, can be applied in GWAS. Our results corroborate the 
findings of Chen et al. (2017), who detected genomic regions considering simulated data and reported the superiority 
of BayesA and methods that select variables in detecting regions; according to the authors, these methods typically 
lead to much less shrinkage of large effects but a still greater shrinkage of small effects. Likewise, Chen et al. (2017) and 
Fernando et al. (2017) have stated that the use of variable selection procedures facilitates the determination of WPPA, 
which effectively maximizes the sensitivity and specificity in GWAS compared with inferences based on classic statistics.

In scenarios with 3 and 10 QTLs, BRR showed the poorest performance. In scenario with 100 QTLs, BLASSO and 
BayesA*B* were the less efficient methods. The threshold levels set for WPPA were the highest in some scenarios in 
which these methods performed poorly, corroborating the findings of Fernando et al. (2017), who stated that the false 
positive rate could be compromised by high threshold values for WPPA. The inferiority of BRR to the other Bayesian 
methods in GWAS has already been reported by Fernando and Garrick (2013), and it was re-confirmed in the present 
study. BayesA*B* may have been affected by the selection of degrees of freedom for marker variance, and it is associated 

Table 2. Accuracy (rg,g ̂), false positive rate (FP), detection power (Power), percentage of genetic variance recovered (PE), threshold for 
selecting regions obtained by window posterior probability of association (WPPA), area under the receiver operating characteristic 
(ROC) curve, number (N) of associated regions on chromosomes 11 and 12 (without QTLs), sum of the ranks of each method for 
each evaluation criterion (Rank), and the πa fraction of the markers with the additive effect of BayesCπ and BayesDπ in scenarios 
without dominance

Scenarios Method πa
rg,ĝ FP Power PE WPPA ROC N Rank

1

BRR 0.83(0.01)a 0.18(0.06)c 0.75(0.07)a 96.07(1.19)b 0.63(0.08) 0.79(0.02)a 8.00(2.85)b 10w

BayesA 0.75(0.02)b 0.11(0.04)a 0.75(0.07)a 99.77(0.06)a 0.39(0.08) 0.82(0.03)a 3.40(1.71)a 7b

BLASSO 0.82(0.02)a 0.21(0.06)d 0.83(0.07)a 99.44(0.23)a 0.51(0.09) 0.81(0.02)a 9.80(3.10)b 10
BayesA*B* 0.76(0.02)b 0.17(0.05)b 0.80(0.07)a 99.78(0.07)a 0.36(0.06) 0.82(0.02)a 6.70(2.67)b 9

BayesCπ 0.03(0.01) 0.72(0.02)c 0.12(0.05)a 0.68(0.08)b 99.87(0.04)a 0.51(0.13) 0.73(0.04)b 4.50(2.30)a 10
BayesDπ 0.12(0.02) 0.73(0.02)c 0.20(0.06)c 0.78(0.07)a 99.89(0.04)a 0.42(0.12) 0.78(0.03)a 7.50(2.42)b 11

2

BRR 0.72(0.02)a 0.62(0.08)b 0.90(0.04)a 93.52(2.97)b 0.28(0.05) 0.57(0.04)c 31.80(4.56)b 11w

BayesA 0.69(0.02)b 0.32(0.07)a 0.68(0.08)b 95.37(1.54)b 0.29(0.04) 0.67(0.03)b 14.70(4.01)a 10
BLASSO 0.72(0.02)a 0.37(0.09)a 0.69(0.09)b 83.91(5.89)c 0.42(0.07) 0.64(0.03)b 17.90(4.95)a 10

BayesA*B* 0.71(0.02)a 0.38(0.07)a 0.69(0.08)b 89.41(3.83)c 0.35(0.05) 0.63(0.03)b 18.60(4.35)a 10
BayesCπ 0.04(0.01) 0.67(0.03)b 0.12(0.02)a 0.67(0.04)b 98.44(0.45)a 0.23(0.03) 0.77(0.03)a 4.00(1.26)a 8b

BayesDπ 0.08(0.02) 0.67(0.03)b 0.16(0.03)a 0.72(0.05)b 98.85(0.38)a 0.22(0.03) 0.77(0.03)a 6.60(2.39)a 8b

3

BRR 0.61(0.02)a 0.48(0.04)a 0.67(0.04)c 78.78(2.95)c 0.34(0.02) 0.59(0.01)a 20.90(1.16)a 10
BayesA 0.56(0.03)b 0.52(0.05)b 0.71(0.05)a 81.53(4.06)b 0.29(0.02) 0.58(0.01)a 23.70(1.90)c 11
BLASSO 0.55(0.04)b 0.50(0.05)b 0.67(0.05)c 79.58(4.29)b 0.30(0.03) 0.58(0.01)a 22.20(2.06)b 12w

BayesA*B* 0.56(0.03)b 0.50(0.03)b 0.68(0.04)b 79.98(3.06)b 0.32(0.02) 0.58(0.01)a 23.00(1.41)c 12w

BayesCπ 0.24(0.01) 0.59(0.03)a 0.49(0.05)a 0.67(0.05)c 80.07(3.79)b 0.30(0.02) 0.59(0.01)a 21.60(1.89)a 9b

BayesDπ 0.44(0.01) 0.59(0.03)a 0.52(0.04)b 0.70(0.04)b 82.64(2.86)a 0.27(0.01) 0.59(0.01)a 22.00(1.26)b 9b 
w: worst and b: best method
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with the shrinkage parameter. According to Azevedo et al. (2015), proper selection of degrees of freedom is essential 
for the efficiency of the method; thus, new values should be analyzed in future studies.

The false positive rate and number of associated regions on chromosomes 11 and 12 (without QTL) increased 
with increase in the number of QTLs controlling the trait of interest, except when BayesCπ and BayesDπ were used in 
scenarios 1 and 2, in which equal or lower values were noted. Regarding the detection power of regions, percentage of 
genetic variance explained, and AUC, there were small yet similar decreases in the values with increase in the number 
of QTLs and consequent decrease in heritability. These results are consistent with the reports of Shin and Lee (2014); 
the authors used simulated data and found that statistical power estimates were affected by heritability, the proportion 
of the genetic variance and polygenic effects, and the number of causal variants.

The results for scenarios considering dominance are presented in Table 3. BLASSO was superior in scenarios controlled 
by three QTLs, because it jointly presented better results of the tested efficiency measures. In other scenarios, however, 
the values of all methods were similar for most measures, with the superiority of BLASSO being less evident. BLASSO, 
BayesA*B*, BayesCπ, and BayesDπ presented the maximum values of detection power for associated regions and 
percentage of genetic variance explained. In the scenario controlled by 10 QTLs, only BayesDπ stood out, because it 
presented a lower false positive rate, higher detection power value, greater percentage of variance explained, larger 
AUC, and fewer associated regions detected on chromosomes 11 and 12. BayesA*B* showed the poorest performance, 
with a lower detection power, smaller percentage of genetic variance recovered, and lower accuracy. Furthermore, in 
the scenario with 100 QTLs, BRR was more efficient. Contrary to that in the other scenarios, BayesDπ was the least 
efficient in this architecture.

For the scenario with three QTLs, the detection power for associated regions of all Bayesian methods analyzed 
increased in the presence of dominance, indicating the importance of considering these effects in association studies 
(Tables 2 and 3). Although less evident, the detection power also increased in the scenario with polygenic inheritance 
(100 QTLs). Wellmann and Bennewitz (2011) have elucidated the relevance of dominance effects, demonstrating that the 
dominance and additives effects are inter-dependent. Furthermore, Bennewitz et al. (2017) stated that the additive and 
dominance effects can often collectively increase the detection power of genomic regions. Even if only additive effects 

Table 3. Accuracy (rg,g ̂), false positive rate (FP), detection power (Power), percentage of genetic variance recovered (PE), threshold for 
selecting regions obtained by window posterior probability of association (WPPA), area under the receiver operating characteristic 
(ROC) curve, number (N) of associated regions on chromosomes 11 and 12 (without QTLs), sum of the ranks of each method for 
each evaluation criterion (Rank), and the πa and πd fractions of the markers with the additive and dominant effects of BayesCπ and 
BayesDπ in scenarios with dominance

Scenarios Method πa πd
rg,ĝ FP Power PE WPPA ROC N Rank

4

BRR 0.85(0.02)a 0.55(0.06)a 0.95(0.05)b 97.44(2.56)b 0.30(0.05) 0.47(0.04)b 54.20(4.77)a 9
BayesA 0.76(0.02)c 0.56(0.06)a 0.95(0.05)b 97.36(2.64)b 0.17(0.03) 0.46(0.04)b 55.70(4.52)a 11w

BLASSO 0.80(0.01)b 0.57(0.06)a 1.00(0.00)a 100.00(0.00)a 0.26(0.04) 0.49(0.05)a 56.30(4.93)a 7b

BayesA*B* 0.74(0.05)c 0.60(0.07)b 1.00(0.00)a 100.00(0.00)a 0.22(0.04) 0.48(0.04)a 58.00(5.25)b 10
BayesCπ 0.46(0.01) 0.42(0.01) 0.74(0.03)c 0.60(0.07)b 1.00(0.00)a 100.00(0.00)a 0.26(0.04) 0.47(0.04)b 58.10(5.08)b 11w

BayesDπ 0.33(0.02) 0.45(0.01) 0.80(0.04)b 0.61(0.07)b 1.00(0.00)a 100.00(0.00)a 0.14(0.02) 0.47(0.04)b 58.90(5.20)b 10

5

BRR 0.78(0.02)a 0.37(0.09)c 0.62(0.07)a 76.02(5.07)a 0.50(0.08) 0.58(0.02)b 10.60(2.86)c 11
BayesA 0.66(0.03)c 0.28(0.06)b 0.54(0.06)b 70.81(6.66)b 0.48(0.05) 0.59(0.02)b 7.50(1.40)b 13
BLASSO 0.72(0.02)b 0.37(0.08)c 0.62(0.06)a 77.36(4.58)a 0.45(0.06) 0.57(0.02)b 10.80(2.57)c 13

BayesA*B* 0.68(0.02)c 0.26(0.07)b 0.52(0.06)c 69.40(5.63)c 0.55(0.05) 0.58(0.02)b 6.90(1.66)a 14w

BayesCπ 0.48(0.01) 0.42(0.01) 0.69(0.02)b 0.26(0.07)b 0.52(0.06)c 68.16(5.31)c 0.56(0.05) 0.58(0.02)b 6.70(1.61)a 13
BayesDπ 0.42(0.01) 0.45(0.01) 0.64(0.02)d 0.25(0.07)a 0.54(0.06)b 76.47(6.36)a 0.45(0.04) 0.60(0.02)a 6.30(1.76)a 10b

6

BRR 0.71(0.01)a 0.46(0.07)a 0.71(0.05)a 83.46(3.78)a 0.35(0.05) 0.62(0.04)a 37.50(7.14)a 6b

BayesA 0.65(0.02)b 0.47(0.06)b 0.73(0.04)b 85.06(3.06)b 0.30(0.03) 0.62(0.04)a 38.80(7.61)a 10
BLASSO 0.62(0.04)c 0.43(0.05)a 0.70(0.05)a 83.53(3.54)a 0.32(0.02) 0.62(0.03)a 43.20(10.97)b 9

BayesA*B* 0.63(0.01)c 0.47(0.06)b 0.73(0.04)b 85.06(3.06)b 0.32(0.03) 0.62(0.04)a 38.60(7.26)a 11
BayesCπ 0.45(0.01) 0.43(0.01) 0.68(0.01)b 0.50(0.06)c 0.75(0.04)b 86.26(3.30)b 0.30(0.03) 0.62(0.04)a 43.90(9.14)b 12
BayesDπ 0.46(0.01) 0.45(0.01) 0.68(0.03)b 0.52(0.07)c 0.77(0.04)c 87.84(2.99)b 0.24(0.02) 0.62(0.04)a 43.10(8.14)b 13w

w: worst and b: best method.
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are of interest, dominance effects should not be neglected, because these effects are not completely independent. In 
addition, dominance is an important factor contributing to heterosis (Wellmann and Bennewitz 2012), which is of great 
significance to GWAS and can markedly affect the identification power of SNPs (Vidotti et al. 2019). For the scenario with 
10 QTLs, detection power and percentage of genetic variance explained decreased when dominance was considered. 
Importantly, the number of associated regions on chromosomes 11 and 12 increased when dominance was considered. 
This was observed for all methods and in all scenarios, particularly in the scenario with three QTLs, in which this increase 
was more evident. However, according to Wang et al. (2004), if dominance effects are not correctly considered, the 
genetic progress of a breeding program may be even slower than when these values are neglected.

The probability π obtained by BayesCπ and BayesDπ for the scenarios without dominance ranged from 0.03 to 
0.44, indicating that the number of markers that were supposedly in LD with the QTL ranged from 90 to 1,320. The π 
values were lower for BayesCπ criterion in all scenarios without dominance (scenarios 1, 2, and 3). However, among 
scenarios considering dominance, in the scenarios with 3 and 10 QTLs, the π values for additive effects were smaller for 
BayesDπ, while in the scenario with 100 QTLs, the values were similar for both methods. Thus, even in the scenarios with 
dominance, BayesCπ presented lower values. Notably, the π values were always higher in scenarios in which dominance 
was considered. According to Fernando and Garrick (2013), higher π values can be more discriminatory in identifying 
QTLs with major effects, which is an important element for SNP selection. In addition, no difference was observed in 
probability values for different mean degrees of dominance.

In the absence of dominance, BayesA, BayesDπ, and Bayes Cπ were more efficient in terms of the false positive rate 
and detection power in all scenarios. However, in the presence of dominance, no method stood out in more than one 
scenario. Thus, BayesDπ is more suitable for genomic association studies, particularly when the genetic architecture of 
the trait is unknown. In addition, BayesA*B* did not stand out in any simulated scenario in the present study and was, 
therefore, considered the least suitable in all scenarios.
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