

NOTE

Development of microsatellite panels for molecular fingerprinting of Napier grass (*Cenchrus purpureus*) cultivars

Ana Luisa Sousa Azevedo^{1*}, Flávia Rangel de Souza¹, Rosiana Angélica Campos¹, Daniele Ribeiro de Lima Reis¹, Juarez Campolina Machado¹, Marco Antonio Machado¹, Francisco José da Silva Lédo¹ and Marcio Resende²

Abstract: Napier grass is a perennial tropical forage that is used in beef and dairy production systems. Despite its significance in animal nutrition, molecular information available, such as microsatellite or simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers, is limited. Using an assembled transcriptome, 50 novel SSR markers were developed, of which 21 were found to be polymorphic. These polymorphic markers were tested for DNA fingerprinting of Embrapa cultivars, five of which revealed distinct allele patterns for cultivar identification. SSR markers 05, 17, and 44 identified a unique pattern in the BRS Kurumi cultivar. The BRS Capiaçu cultivar was identified using SSR markers 17, 43, and 44. The Pioneiro cultivar exhibited a rare fragment amplification pattern using SSR marker 46, while SSR marker 44 revealed a distinct allele in the BRS Canará cultivar. SSR marker panels could be utilized as DNA fingerprinting tools to assist in cultivar identification.

Keywords: breeding program; elephant grass; SSR

INTRODUCTION

Napier grass (*Cenchrus purpureus* (Schumach.) Morrone syn. *Pennisetum purpureum* Schumach.), also known as elephant grass, is a perennial allotetraploid (2n = 4x = 28, genome A'A'BB) (Hanna 1981, Jauhar 1981) forage grass in the *Poaceae* family. It is one of the most important perennial tropical C4 grasses (Coombs et al. 1973, Pereira et al. 2016). It occurs naturally in a vast region of East Africa (Cavalcante and Lira 2010) and reproduces sexually, although the majority of its propagation is vegetative (Pereira et al. 2010). This plant species is used as forage in tropical and subtropical beef and dairy cattle systems owing to its excellent quality, palatability, and dry matter production (Souza Sobrinho et al. 2005, Orodho 2006). Likewise, because of its high dry biomass output, Napier grass has great bioenergy production potential (Lima et al. 2011, Morais et al. 2012, Rengsirikul et al. 2013, Fontoura et al. 2015, Rocha et al. 2017, Tsai et al. 2018, Kongkeitkajorn et al. 2020).

Since 1998, the Embrapa Dairy Cattle Research Center has coordinated a Napier grass breeding program in response to the market demand for dairy products in the tropics and the significance of this grass species (Pereira et al.

Crop Breeding and Applied Biotechnology 22(4): e42522244 , 2022 Brazilian Society of Plant Breeding. Printed in Brazil http://dx.doi.org/10.1590/1984-70332022v22n4n39

*Corresponding author: E-mail: ana.azevedo@embrapa.br D ORCID: 0000-0003-1939-0339

> Received: 01 June 2022 Accepted: 26 September 2022 Published: 19 October 2022

¹ Embrapa Gado de Leite, Avenida Eugênio do Nascimento, 610, Aeroporto, 36038-330, Juiz de Fora, MG, Brazil
² University of Florida, Gainesville, FL 32611, United States

ALS Azevedo et al.

2010). The breeding program has developed cultivars with high forage yield, tolerance to low-fertility soils, and other desirable traits (Pereira et al. 2003, Pereira et al. 2010).

Although scarce, molecular information on Napier grass germplasm accessions and cultivars could serve as a powerful tool in routine breeding programs. Recently, two genomic assemblies of Napier grass have been released, and this information should aid in the development of novel tools for use in breeding programs (Yan et al. 2020). In addition, genome-wide association study analyses have been used to reveal differences in high biomass yield among C. purpureus genotypes (Habte et al. 2020), and Muktar et al. (2021) identified quantitative trait loci regions associated with forage biomass yield, water usage efficiency, and feed quality traits. Azevedo et al. (2012) evaluated microsatellite or simple sequence repeat (SSR) markers discovered in pearl millet (Cenchrus americanus) and found that 30 SSR markers were successfully cross-amplified in Napier grass. These markers assisted in assessing the genetic diversity at the Embrapa Germplasm Bank but were insufficient to identify cultivar-specific alleles. Identifying a cultivar based on morphological characteristics alone can be challenging because of environmental interference and the prolonged time periods required to assess trait expression, for example, when identification is dependent on reproductive characteristics. Therefore, molecular identification could be extremely beneficial because there is no environmental influence, and it is feasible to screen early. DNA fingerprinting information of Embrapa cultivars, such as BRS Canará, BRS Capiaçu, BRS Kurumi, and Pioneiro, could aid the forage industry in avoiding issues such as biopiracy by authenticating the origin of these cultivars. Furthermore, DNA fingerprinting could address marketing difficulties, such as cultivars sold under multiple names in various locations (Karaagac et al. 2014).

This study aimed to develop new microsatellite markers for Napier grass and identify unique markers specific to Embrapa cultivars (BRS Canará, BRS Capiaçu, BRS Kurumi, and Pioneiro), constituting the most widely marketed forage cultivars of Napier grass in Brazil.

MATERIAL AND METHODS

Microsatellite regions were derived from a Napier grass transcriptome assembled by our research team. This transcriptome was used to identify genes associated with lignin production (unpublished data), and all sequencing data were obtained from the NCBI database (BioProject accession number PRJNA731177). The microsatellites were detected using the MISA v 1.0 web server (Beier et al. 2017) with default parameters (SSR motif length min no. of repetitions: 1-10/2-6/3-5/4-5/5-5/6-5; max_difference_between_2_SSRs: 100; GFF: true). Fifty primer sets were designed using the Primer3 v 2.3.4 web-based program (Untergrasser et al. 2012). Primers with 18 to 25 base pairs (bp) in length and amplicon products with 100 to 400 bp predominantly tandemly repeated tri-nucleotide motifs (5 di-, 43 tri-, and 2 tetra-nucleotide motifs) were selected.

DNA was extracted from young leaves using the cetyltrimethylammonium bromide method (Doyle and Doyle 1987). Polymerase chain reaction (PCR) analysis was used to evaluate the selected primers in four Napier grass samples as follows:1X GoTaq reaction buffer, 0.5 μ M of each forward and reverse primer, 3 mM MgCl₂, 0.4 mM dNTP (Promega, Madison, WI, USA), 1 U GoTaq Flexi DNA Polymerase (Promega, Madison, WI, USA), and 45 ng genomic DNA in a final volume of 20 μ L. PCR was conducted in a thermocycler (Thermo Scientific, Waltham, Massachusetts, USA), using the following cycling profile: initial denaturation at 95 °C (15 min); 5 cycles at 94 °C (30 s), annealing temperature at 57 °C (90 s) and 72 °C (1 min), with a 1 °C decrease per cycle; 25 cycles at 94 °C (30 s), annealing temperature at 52 °C (90 s) and 72 °C (1 min); and a final extension cycle at 60 °C (60 min). The amplification products were subjected to 2% agarose gel electrophoresis for 2 h and 30 min at 120V. Gels were stained for 30 min using ethidium bromide, and DNA fragments were detected using ultraviolet light via the EagleEye photo-documentation system (Stratagene, San Diego, California, USA).

Twenty-one microsatellite markers with polymorphic loci and good amplification patterns in at least three samples were selected to develop a unique marker panel for each Embrapa cultivar (BRS Canará, BRS Capiaçu, BRS Kurumi, and Pioneiro). Twenty samples, comprising cultivars and accessions from the Napier Grass Active Germplasm Bank (BAGCE 1, 2, 7, 18, 30, 53, 56, 57, 8, 60, 67, 68, 70, 71, 103, 105, BRS Canará, BRS Kurumi, Pioneiro, and BRS Capiaçu) were selected for this purpose. The accessions were selected based on a prior evaluation of genetic diversity (Azevedo et al. 2012) and represented the maximum diversity discovered in the germplasm bank. PCR was performed under the same conditions

as described above, and the amplified products were loaded onto 12% native polyacrylamide gel electrophoresis for 5 hours at 500V and stained with silver nitrate (Bassan et al. 1991). Gel scoring was performed using GelAnalyzer 19.1 (www.gelanalyzer.com), and the results were exported to a Microsoft Excel spreadsheet where the presence of an allele was represented by 1 and its absence by 0 because heterozygotes could not be identified.

Diversity analyses were performed in NTSYs software (Rohlf 2009) utilizing the Jaccard coefficient to determine genetic similarity and the unweighted pair group method arithmetic averages (UPGMA) method to construct a dendrogram.

RESULTS AND DISCUSSION

Of the 50 SSR markers identified and tested, 47 (94%) were successfully amplified in Napier grass (Table 1). We identified 94 alleles from four samples in our initial PCR tests (Supplementary Figure 1), and the best markers (i.e., good amplification in at least three samples) were chosen for the following phase. This novel set of molecular markers should be of great assistance in assessing genetic diversity to maximize the advantages of crossing in situations where inbreeding depression is a concern. It could also be used to develop specific molecular marker panels for cultivar identification and protection. Previous SSR marker-based diversity studies in Napier grass used markers established in other species, such as pearl millet (Azevedo et al. 2012, Kawube et al. 2015); therefore, these markers were expected to be located in conserved regions with less polymorphism. In this study, SSR markers were identified in the transcriptome of Napier grass that had the best potential to have additional alleles.

A polymorphic SSR panel is essential for DNA fingerprinting that is useful in many species, such as pearl millet (Ambawat et al. 2021, Makwana et al. 2021) and sugarcane (Singh et al. 2019). DNA fingerprinting enables precise, objective, and rapid cultivar identification and has proven to be an efficient tool for crop germplasm characterization, collection, and management (Zhu et al. 2012). Cultivar discrimination must be quick, accurate, and exact to guarantee the protection of intellectual property associated with cultivars (Scarano et al. 2015, Le et al. 2016).

Following initial PCR primer screening, 21 polymorphic SSR markers were utilized to detect unique marker patterns in four Embrapa commercial cultivars (BRS Capiaçu, BRS Canará, BRS Kurumi, and Pioneiro). To ensure the distinctiveness of these marker panels, these cultivars were molecularly compared with 16 Napier grass accessions from the Embrapa Germplasm Bank that were selected for their high genetic diversity (Azevedo et al. 2012). Thus, fewer samples were required to establish a cost-effective and time-efficient high-resolution molecular panel (Table 2). Among the selected accessions, two BRS Capiaçu parentals (BAG 57 and BAG 60) and a BRS Kurumi parental (BRS 57) were genotyped.

Five SSR markers revealed a distinct allele pattern for one or more Embrapa cultivars (Table 2). Previous studies have shown that it is possible to differentiate cultivars using only four to six markers (McGregor et al. 2000, Moisan-Thiery et al. 2005, Reid and Kerr 2007). A protocol was established to identify cultivars using polyacrylamide gel, despite its limited resolution compared to that of capillary electrophoresis. The intention was to provide a rapid, cost-effective, and suitable protocol for laboratories equipped with basic facilities for molecular assays.

A panel consisting of three SSR markers was selected to identify the BRS Kurumi cultivar (Supplementary Table 3 and Figure 1). RNA-CE 05 exhibited a unique pattern with three alleles (275/280/295bp), RNA-CE 17 identified a 265 bp rare allele, and RNA-CE 44 revealed five alleles (150/154/162/198/210bp). Some SSR markers shared alleles across all samples; therefore, they could be used as positive controls for SSR PCR analysis. All samples contained the alleles 275 bp (RNA-CE 05), 150 bp (RNA-CE 44), and 128 bp (RNA-CE 46) (Supplementary Figure 2).

Three SSR markers (RNA-CE 17, RNA-CE 43, and RNA-CE 44) were identified as informative markers for identifying the BRS Capiaçu cultivar. RNA-CE 17 amplified a rare segment of 265bp, whereas BRS Capiaçu differentiation through RNA-CE 43 was because of a lack of amplification. RNA-CE 43 was tested under various conditions in BRS Capiaçu samples, and no amplification was detected. RNA-CE 44 exhibited a rare allele pattern (150/162 bp) in BRS Capiaçu, and a combination of these three SSR markers would be useful in identifying the cultivar.

The BRS Canará cultivar was identified using RNA-CE 44, where three alleles were detected (146/150/158bp). The 158 bp allele was exclusively amplified in this cultivar. The best SSR marker for identifying Pioneiro cultivars was RNA-CE 46, which generated a unique pattern by amplifying a rare 130 bp fragment.

ALS Azevedo et al.

Diversity analysis was performed to assess the genetic variability of the 16 samples using these five SSR markers. Three groups were formed with a diversity coefficient of 0.50: one with BRS Capiaçu, one with BRS Kurumi, and one

Table 1. List of 47 microsatellite markers successfully amplified in four samples of Cenchrus purpureus, forward and reverse sequences,
repeat motif, predicted product size, and selected primers tested in cultivar identification

RNA-E D1 TTECGATGALCACACTT GGCAGCAGGGTGATCTTCCT (GAT), 188 Yes RNA-CE D2 TACACCACTCTCTAGCCGA TGGTGATGACGCCATGCCATGC (TGC), 267 Yes RNA-CE D4 GGCCTCTCCTTTGGTCTTT TTGGCGGGGTGGTAGGATT (TGC), 125 Yes RNA-CE D6 GGTCTAATGCCGATGGGG CAATGCCCATGCTAGGTGC (GCG), 221 No RNA-CE D7 TTCTCAACTCACTCGCTGG CATTGGAGAGGAGCGAGCGGG (CGG), 324 No RNA-CE D9 GTCTACAACACCTTTCGGCGA GTCCGACCATGCACACGCACGGT (CGG), 324 No RNA-CE D9 GTCTACAACACCTTCGGCGA GTCCACCACGGACACGGACACCT (CGG), 119 No RNA-CE D3 GATGGAGGTGGAGGAGGA GACCACGCACACACCACACGCACGGT (CGG), 220 Yes RNA-CE 13 GATGGAGGGAGGAGGGA GACCACCACACACACCACGACACGCACAGGAGGA (ATCO, 117 No RNA-CE 14 AGGTGTGGTGGTGGTGGACA AACAGGCACGGCACGGCCCCCTT (TGA), 121 No RNA-CE 15 TTCTTGTGAGGTGGTGGTGGACA TTCGTGAGGTGGTGGTGGAGGA GCCCCCG, <t< th=""><th>Marker name</th><th>Forward primer</th><th>Reverse primer</th><th>Repeat motif</th><th>Predicted product size (bp)</th><th>Primer selected</th></t<>	Marker name	Forward primer	Reverse primer	Repeat motif	Predicted product size (bp)	Primer selected
RNA-EE 12 TACACCACCTCATTAGCCGA TGGTTGATAGCCGTCCATTCG (TGC), 360 Yes RNA-EE 04 GGCCTTCATTTGCCGCTTT TTTGGCCGTTCCTGCGAGATTGC (GCC), 125 Yes RNA-EE 05 GGTCTATGCCTGCGCTT GAAGGGATGAAGCGAGTGCC (GCC), 399 No RNA-EE 06 CGECGCACATGAAGTCCTTCT GAAGGGATGAAGCGAGTGC (GCC), 221 No RNA-EE 08 TCCTCCACCTTGCGCGGA GTCGCACCTTGCCTGCTTGACT (GGC), 324 No RNA-EE 10 GCCTCACCTTGCACCACC CTCGCACCTCGCCTGTCACC (CACLGAC), 124 No RNA-EE 10 GCTCACCACACCACGAGGAGAGAGAGAGGAAGC GAAGGGGAGGAAGGAAGG GAGCACCACGACGAAGGAGACT (CGA), 140 No RNA-EE 13 GAGTGGAGTTGAAGGCAGC AACCAGCACACCACGAAGAAGC (GAG), 220 Yes RNA-EE 15 TTCTTCCCACACCGACCACT CACACACACACCACGAAGAAGC (GAG), 271 No RNA-EE 14 GGGTGGCTTTGTTCAGGG GCTCTCCCACACCGCCACTC (GAG), 271 Yes RNA-EE 15 TTCTCCCACACGGTGCAAA ATTGGACACACGGAGGAAGAGGCCCCACTC (GGA),	RNA-CE 01	TTGCGATGCACCACAACTTG	GGCAGCAGGTGAATCTTCCT	(GAT)₅	188	Yes
RNA-EE 04 GGCCTCTCCTTTTGCGTCTTT TTTGGCCGGTTGCAGGT (TG), 2.57 Yes RNA-EE 05 GGTCTATGCGGATCAGG GGCATAGCCCCTGAGTGC (GCC), 125 Yes RNA-EE 06 CGGCGACATGAAGTCCTTCT GAAGGGATGAACGCGAGTGC (GCG), 210 No RNA-EE 07 TTCTCACATCAGCTGCTGG CATTGGAAGAGCGAGGGAG (CGG), 211 No RNA-EE 09 GTCTACACACCTTCGCGGC CTCTCCGCGCTCTCTCAGC CACATCACACGCACACAGAGGAT (GAG), 119 No RNA-EE 11 AGCAGGGGAGGGAGAGGGAAT GAAGCCACCAGAACAGGACCA (CAG), 126 No RNA-EE 12 GAATGGATGTGAGCAAGGG GAACCACACACACACCCGAAGCC (AGG), 220 Yes RNA-EE 13 GTCTCCTCCTCCACCTCACCC CATAGCACCACACACACCACACC (AGG), 221 Yes RNA-EE 14 AGTCTCTCTCACCTCACCC CATAGCCTTGGACCACCACAAC (GGC), 231 Yes RNA-EE 13 TGGATGATCACACACACACAGG GCCACCACACACACACACACACACACACACACACACACA	RNA-CE 02	TACACCACCTCCTTAGCCGA	TGGTTGATAGCCGTCCATCG	(TGC) ₅ 360		Yes
RNA-E 05 GGTCTAATGCCGGATCAGGG GCAATGCCCATGCTCTAGCTGC (GCG), 125 Yes RNA-E 06 GGGGGAATGAGAGTCCTTC GAAGGGATGAACGCGGATTGC (GCG), 221 No RNA-E 07 TTCTCACATCAGCTGGGG CATTGGAGAGACGGATGC (GCG), 394 No RNA-E 08 TCCTCCCGCTTTACCCAAAC TTCTGGCACTGCGCTGGACACT (GAC), 324 No RNA-E 08 GTCTACACACACATCGGCGCCTTGCACT (GAC), 139 No RNA-E 10 TCCTCCTCTCCCCTCTCAGC CACATGCAGGCCCTTAGCT (GAC), 139 No RNA-E 13 GTATGCACGCCAATGGCACT AACAGGCAGCACGCACTGACT (GAG), 127 No RNA-E 13 GTATGCACGCCAATGCCCA ACCACACACACACGCGCCTTAGCT (AGGT), 137 No RNA-E 15 TTCTTCTCGACGCACC CATCCACACACACACGCGCCTTGCTT (TGG), 234 No RNA-E 14 ACGGATGGAGGAGAGAGGA GCCTCCACAGCGGCACGCAC (AGG), 211 No RNA-E 15 TTCTTCCTGCCACCTCACC GCACCACACACGCGCTGGCACAT (TGC), 138 No <td< td=""><td>RNA-CE 04</td><td>GGCCTCTCCTTTCGCTCTTT</td><td>TTTGGCCGGTTGCTAGGATT</td><td>(TG)₇</td><td>267</td><td>Yes</td></td<>	RNA-CE 04	GGCCTCTCCTTTCGCTCTTT	TTTGGCCGGTTGCTAGGATT	(TG) ₇	267	Yes
RNA-CE 06 CGGCGACATGAAGTCCTTCT GAAGGAAGCGAAGCGGAGCGGA (GCG), 221 No RNA-CE 07 TTCTCACATAGCCTGCTGG CATTGGAGAAGCGAGCGGAG (CCG), 221 No RNA-CE 08 TCCTCCCCCGCTTACCCAAAC TTCTGCAGCACTCGCAACAC (GGC), 304 No RNA-CE 09 GTCTACAACACCTCTGCGGCA GTCGACCAACGACCATGCCCTTACT (GGC), 196 No RNA-CE 11 AGCAGGGGAGGAGAGGAAT GAAGCACCAACGACACGCAAGGAGCACCAAGAGGT (CAG), 119 No RNA-CE 12 GAATGGATGTGAGCAAGG GAACCACACACACACACCCGAACCCGAAGAA (TG), 367 No RNA-CE 13 GTTCCTCCTCCACCACTTGCC AACCACACACACACACACCGGAGAA (TGC), 117 No RNA-CE 14 AGGTGTTCGTCAACGGTG GCCACCACACACACACACACACACCACAAACCC (AGGA), 271 Yes RNA-CE 17 TGGATGGATCCACGGTGCAAA ATTGTACCAAAGACCGGTGCAAA ATTGTACCAAAGACCCACAGACACACACACACACACACAC	RNA-CE 05	GGTCTAATGCCGGATCAGGG	GCAATGCCCATGCTAGATGC	(GCC)₅	125	Yes
RNA-EE 07 TTCTCACATCAGCTGGCTGG CATTGGAGAGAGGGGAGCGAG (CCG), 221 No RNA-EE 08 TCCTCCCGCTTACCCACAC TTCTGGGACATCT (GAC), 304 No RNA-EE 08 TCCTCCCGTTACACACCTTCGGCGA GTCGACCAACGAGGAGAT (CGG), 324 No RNA-EE 10 TCCTCCCTCTCTACACAC CACATACACAGGCAACGAGAT (CAG), 119 No RNA-EE 12 GAGTGGATGTGAGGCAGCT AAACAGGCACACGCAACAACGAGACA (GAT), 246 Yes RNA-EE 13 GTATGCAGCGCAATTGCCAT ACACACAACAACGAAAGCCA (GGG), 220 Yes RNA-EE 14 AGGTGTTCTGTGAAGAGAGAG GACACCACAAACCAAAAGCCCAGCCA, (GGG), 234 No RNA-EE 15 TTCTTCCTGAACGACGATG GCCACACTACACCACAGCAGGAGAGA, (TTG), 371 Yes RNA-EE 18 TGGTGGTGTTTGTAGG GCTTCACAACGAGGCCCCCCCTT (TTG), 371 Yes RNA-EE 20 GATGGACGACGAGGAGAGAGAGA TATGGACGCTCCACAGAGGGC (GGA), 146 No RNA-EE 23 CCCTCATTGTCACGGTGTGTATTTGTCCGG TCTGCGGGTGTGAAA TTGTGGGGCTTGGGCT	RNA-CE 06	CGGCGACATGAAGTCCTTCT	GAAGGGATGAACGCGATTGC	(GCG) ₇	399	No
RNA-EE 08 TCCTCCCGCTTTACCCAAACC TTCTGGCATCTGGCACACCTT (GAC), 324 No RNA-EE 09 GTCTACAACACCTTGGGCGA GTCGACCACCAGCCAAGGAGT (CTC), 196 No RNA-EE 10 AGCAGGGGAGGAGGAGAGT GACCACCACCAGCAAGGAGT (CAC), 196 No RNA-EE 11 AGCAGGGGAGGAGGAGAAT GACACCACCAGCAACAGGCCCTAGCT (GAT), 246 Yes RNA-EE 13 GTATGCACGCCCAATTGCCAT AACAGGCACGCCCCCCTCACCT (GAG), 220 Yes RNA-EE 14 AGGTGTTGTGGAAGAGCGG GACCACACACACACACACACACACACACACACACACACA	RNA-CE 07	TTCTCACATCAGCTCGCTGG	CATTGGAGAGACGGAGCGAG	(CCG) ₇	221	No
RNA-CE 10 GTCTACAACACCTTCGGGGA GTGACACTCCGCTTACT [GAC], 324 No RNA-CE 10 TCCTCCTCTCTCTCAGGC CACATGACCACGCACGAGGGGT [GTC], 196 No RNA-CE 11 AGCAGGGGAGGAGGAGGAAT GAGGACCACGACACGAACGAAT [GAGT], 246 Yes RNA-CE 12 GAGTGGATGTTCAGGCAGCT AACCAGCACCGCACTAGCTT (GGT], 246 Yes RNA-CE 13 GTATGCACGCCAATTGCCAT ACCAACACAACACAACAACACAACACAACACAACACA	RNA-CE 08	TCCTCCCGCTTTACCCAAAC	TTCTCGGCATCTGCAACACT	(CGG) ₇	304	No
RNA-EE 10 TCCTCCTTCCCTCTCAGCC CACATCACCAGCACGAGAFT [CTC] ₂ 196 No RNA-EE 11 AGCAGGGGAGGGAAAT GAGCACCCGAACCAGGACCAGGACCA [CAG], 119 No RNA-EE 12 GAGTGGAGTTGAGGCAGCT AACCAGGCACCTCTAGCTT [GAT], 246 Yes RNA-EE 13 GTATGCACGCCAATTGCCAT AACCAGCACACACACACACCACAACC (AGG), 220 Yes RNA-EE 14 AGGTGTTGAGGAGGGAGG GAACCGACACACACACACACACACACACAC (AGG), 117 No RNA-EE 15 TTCTTCCTCATCCCACCCACACCCCACACACACACACAC	RNA-CE 09	GTCTACAACACCTTCGGCGA	GTCGACCATCCGCTTGTACT	(GAC) ₅	324	No
RNA-CE 11 AGCAGGGAGGAGAGGAAAT GAGCAGCACGGAGCT (CAG), 119 No RNA-CE 12 GAGTGGATGTTGAGGCAGCT AAACAGGCACGCCTATAGCTT (GAT), 367 No RNA-CE 13 GTATGCACGCCAATTGCCT ACCACACAGCGCGCTAGCT (AGG), 220 Yes RNA-CE 15 TTCTTTCCTGCACGCACGTG GCCACCACACAAAGCCCC (AGC), 217 No RNA-CE 15 TTCTTTCCTGCACGGAGCG CACCACCACACAAAGCCCC (AGC), 224 No RNA-CE 17 TGGTGGTGCTTTGTTAAGG GCTCTCCAAAGCCCACATC (AGA), 271 Yes RNA-CE 17 TGGTGGTGGCTTGTTAGGG GCTCTCCAACGCACACCC (GGA), 146 No RNA-CE 10 GATGACGACGACGAGGGAGGCCAGGC CCCACCATGACGTTGTCTCT (GGG), 143 No RNA-CE 21 CCGTGTGTGAATGCCGG GCTCACCACACACAGGGGGGCCGGC (GCG), 143 No RNA-CE 22 AAAGAGGACAAGGGCTCAAG TGTCTGCTGCTGCAAAT (GGG), 121 No RNA-CE 23 CCCTCTACTCTCCAGGTGTAAGCGC GCCTCATGCTGCAAGGAGGC GCCTGCTCAAGGAGACGAGGGCTAAGGGTAGGTGTAGCC <	RNA-CE 10	TCCTCCTCTCCCTCTCAAGC	CACATCACCAGCCAAGGAGT	(CTC) ₆	196	No
RNA-CE 12 GAGTGGATGTTGAGGCAGCT AACAGGCAGGCTAGCTT (GAT), 246 Yes RNA-CE 13 GTATGCACGCCAATTGCCAT ACCACACACAGCGGAGAAA (TG), 367 No RNA-CE 14 AGGTGTTGCAGGAGCAGG GAACCGACACACACAGCGGAGAAA (ATCC), 117 No RNA-CE 15 TTCTTTCCTGCACCTCACC CATCAGCTTGGACCTACCCA (GCG), 271 Yes RNA-CE 17 TGGTGGTGCTTGTTGTAGGT GCTCTCCACACCACACAGCGCACC (GGA), 271 Yes RNA-CE 18 TGGATGGACGACGAGGAGG GCCTCACACGACAGAGGCGC (GGA), 146 No RNA-CE 21 CCGTGTTGATTGCTCGGT ATGTTCTTGGAGGCAGGGCGAGGGC (GGA), 143 No RNA-CE 21 CCGTGTTGATTGCTCGGG TGTTTGTGGCCTGGTCAAT (GGC), 121 No RNA-CE 22 AAGAGGAAGGGCAAGGTGGC GCCTCTAGTCTCCAGGCAAGGCG (GCG), 124 No RNA-CE 24 ACGATCAAGGAAGAGGGCC GCCTCTAGTCTCCAGGGAAG CCTCCCTCTCCTCTCTGTGGCC (GCG), 124 No RNA-CE 25 TCCTCCCTCTCTCTGTGGCC GCCTCTAGGGCGGCGGGGGCGGGGGC <td< td=""><td>RNA-CE 11</td><td>AGCAGGGGAGGAGAGGAAAT</td><td>GAGCACCACGAACAGGATCA</td><td>(CAG)₇</td><td>119</td><td>No</td></td<>	RNA-CE 11	AGCAGGGGAGGAGAGGAAAT	GAGCACCACGAACAGGATCA	(CAG) ₇	119	No
RNA-CE 13 GTATGCACGCCATTGCCAT ACCCACCACACACGCGAGAAA (TG), 367 No RNA-CE 14 AGGTGTTCGTGAAGACAGG GAACCGACAACACACACACACACACC, (AGG), 220 Yes RNA-CE 15 TTCTTTCTCACCCACCCCACC CATCAGCTTGGACACACACACACACACAC (AGG), 294 No RNA-CE 15 TGGTGGTGCTTTGTTCAGGT GCTCTCCAAAGCCCACACAC (GCG), 271 Yes RNA-CE 15 TGGATGACCACGGGGGACA ATTGTGACGACACACGCGCCCTT (TG), 371 Yes RNA-CE 19 ACTAGTCACACACACAGAGGC CCCCACCATGGCTTGTTCTC (GGAT), 195 Yes RNA-CE 20 GATAGGAGAGGAGGCTAGGG TGTCCTGAGAGGAGGCG (GCA), 143 No RNA-CE 23 CCCTCTATCCCACGCTCAAG GATGAGGAGGCTGAGGT (GCT), 158 Yes RNA-CE 24 AAGAGGAGAGAGGCCG GCCCTGCGAGGTGTAGGT (GCG), 121 No RNA-CE 25 TCCTCCTCTCTCTGTGGTC TACCCCTGCGAGGTGTAGGT (GCT), 124 No RNA-CE 28 CTCTCCTCTCTCTCGTGTGCTC TACCCCTGCGAGAGGTGTGC (GCG), 132	RNA-CE 12	GAGTGGATGTTGAGGCAGCT	AAACAGGCACGCTCTAGCTT	(GAT)	246	Yes
RNA-CE 14 AGGTGTTCGTGAAGAGCAGG GAACCGAACACCAAAAGCCC (AGG) ₂ 220 Yes RNA-CE 15 TTCTTCCTGACGACCGTG GCCACCATCACCACCAAAAC (ATCC) ₈ 117 No RNA-CE 15 TTCTTCCTGACGACCGTG GCCACCATCACCACCACAAAC (ATCC) ₈ 294 No RNA-CE 17 TGGTGGTGCTTTGTCAGGT GCTTCTCCAAACGCCCCGC (AGA) ₈ 271 Yes RNA-CE 18 TGGAGGACCACCACCACACCACGGC CCCACCATCC (AGA) ₈ 146 No RNA-CE 20 GATGACGACGACGAGGA TACCCCTGGGTTCTTCTGGG (GGA) ₈ 146 No RNA-CE 21 CCGTGTTGAATTGCTCCGTG ATGTTGTTGGAGGCTGGGCAGGG (GGG) ₈ 220 Yes RNA-CE 22 AAAGGAGGAGGAGCTAGG TGTTGGTGGACGATGT (GGG) ₈ 221 No RNA-CE 23 CCCTCATCTCACAGGAACA CCTGCAGGAGGTCTGGTG (GGT) ₈ 121 No RNA-CE 24 ACGATCAAGGAACGAACGATGT CCTGCAGGAGGTCTTCGTGGTC (GCC) ₈ 309 Yes RNA-CE 27 TCACAGGAGGACGAACGATGT CCTGCTCCTCCTCTGTGGTCT TACCAGGGAGGACGAGGG (CTGTCCCTCCTCCAGGA	RNA-CE 13	GTATGCACGCCAATTGCCAT	ACCACACAACAGCCGAGAAA	(TG),	367	No
RNA-CE 15TTCTTTCCTGACCGACCGTGGCCACCATCACCACCAAAAC(ATCC)_a117NoRNA-CE 16ATCTCCTCCTCACCTCACCCATCAGCTTGGACCTACGCA(GCG)_a294NoRNA-CE 17TGGGGGGTCTTGAGGTGCTTCTCCACACCCCACACC(AGA)_a271YesRNA-CE 18TGGATGATCCACGGTGCAAAATTGTAGCAAAGCCCGCCTT(TTG]_a371YesRNA-CE 19ACTAGTCACACACACAGGGCCCACCATGGCTTGTCTTCT(GGAT]_a195YesRNA-CE 20GATGACGACGAGGAGGAGGATACCCCTCCAGCTTCTCCAGG(GGA)_a146NoRNA-CE 21CCGTGTTGATTGCTCGTGATGCTTCTGAGGGGCGCGGCGGGGGGGGGGGGGGGGGGG	RNA-CE 14	AGGTGTTCGTGAAGAGCAGG	GAACCGACAACCAAAAGCCC	(AGG)	220	Yes
RNA-CE 16ATCTCCTCCTCCACCTCACCCATCAGCTTGGACCTACGCA(GCG) c294NoRNA-CE 17TGGTGGTGCTTTTCAGGTGCTTCTCCAAAGCCCACTC(AGA), C271YesRNA-CE 19ACTAGTCACAGGTGCACAGTGCAAATTGTACTAGACAAGCCCACTT(TTG), C371YesRNA-CE 20GATGACGACGACGAGAGGAGCCCACCATGGCTTGTCTCT(GGA), C146NoRNA-CE 21CCGTGTGTGAATTGCTCCGTGATGTTCTTGGGACGAGGC(GCG), C143NoRNA-CE 22AAAGAGGAGAGGGCTAAGGTGTTGTGGCCTGGTCAAT(GGC), C256YesRNA-CE 23CCCTCTATCCACGCTCAAGGGATGAGGAGGCTGAGGTG(GCG), C121NoRNA-CE 24ACGATCAAGGACAAGTCGCCGCCTGTGGGAGTTCGGT(GCG), C309YesRNA-CE 25CTGCAGAGACAGTGGTCCCTGTCGGAGGTCTGTGGTGGTGAGCT(GCG), C309YesRNA-CE 27TCACAGAGGAGAAGACGATGTCCTGTCGGAGGTGTGTCAAGAGGAGGAGGAGGGAGTGT121NoRNA-CE 27TCACAGGAGGAGGAGGAGGAGGAGGAGGGAGGTGT(TCT), C217NoRNA-CE 23CTCGCGGGCTGTCAAGAAGACCTGTCGCGGCTCTCAAGAAGT(GGC), C362NoRNA-CE 33AGGCGAAGGAGGAAGAGCCTATCTCGCCGCTCTCGCAGG(GGC), C132NoRNA-CE 34CTGGCTCTCAAGAAGAGCCTATCGCCGCTGAGAAGAGGGGGTGTCC(GCG), C132NoRNA-CE 35CTTCTCCTCACCCCCACCCCGCTGAAAGAAGGGGGTGTCC(GGC), C132NoRNA-CE 36TGAGGCGAGGAGGAGAGGCCTATCGCCGCGGGGGGTGTCCCACCAC(GGG), C <td< td=""><td>RNA-CE 15</td><td>TTCTTTCCTGACCGACCGTG</td><td>GCCACCATCACCACCAAAAC</td><td>(ATCC)</td><td>117</td><td>No</td></td<>	RNA-CE 15	TTCTTTCCTGACCGACCGTG	GCCACCATCACCACCAAAAC	(ATCC)	117	No
RNA-CE 17TGGTGGTGCTTTGTTCAGGTGCTTCTCCAAACGCCACATC(AGA)271YesRNA-CE 18TGGATGATCCACGGTGCAAAATTGTAGCAAAGCCCGCCTT(TTG)371YesRNA-CE 19ACTAGTCACACACACAGGCGCCCACCATGGCTTGTCTTCT(GGAT)195YesRNA-CE 21CGTGTTGAATGCTCGTGATGTTGTGAGAGGCAGGC(GGC)143NoRNA-CE 21CGTGTTGAATGCTCCGTGATGTTCTTGGAGAGGCAGGC(GGC)256YesRNA-CE 22AAAGAGAGAGGGCTAGGGGGTGAGGGCCTGGGGCTGGGGC(GGC)121NoRNA-CE 23CCCTCTCTCTCCAGGCTCGTGAGGTTG(GGC)309YesRNA-CE 24ACGATCAAGGACAAGTCGCCGCCTGCAGGTTCGTC(GCC)124NoRNA-CE 25TCCTCCTCTCTCTGTGCTCTACCCCTGCGGAGTTCGT(GCC)124NoRNA-CE 26CTGCCAGAGGTCAACGAGAGCCTGCTGGGAGTTCACCT(GCC)363NoRNA-CE 27TCACAGGAGGAGAGCGAGTGCTTGTCTGCGAAGTTCACCT(GCC)362NoRNA-CE 28CTCTCTCCTCCCTCCTCCCGGGGAAGGAGGAGGAGGAGGAGGAGGGGG(GCC)362NoRNA-CE 29CAGCCAAGGCAAGGAAGGAAGGACCTATCTCGCCGTCTCAAC(GGC)356YesRNA-CE 34CTTCCCTCATCACCCTTAGCAAAACAGCCGCG(GCC)261YesRNA-CE 35CTTCTCTCGCCTATGCTAAGAAGGGAGGAGGAGGGGGA(CCT)121NoRNA-CE 36CTGCCCTGGCGTGTGCAAGCAAGGGGAGGAGGGGGGA(CCT)261YesRNA-CE 37TTAAGCCCAAGGAGAGCACGTGTAGGCCGGGGAGGGAGGGGGA(CCT)355Yes </td <td>RNA-CE 16</td> <td>ATCTCCTCCTCCACCTCACC</td> <td>CATCAGCTTGGACCTACGCA</td> <td>(GCG)</td> <td>294</td> <td>No</td>	RNA-CE 16	ATCTCCTCCTCCACCTCACC	CATCAGCTTGGACCTACGCA	(GCG)	294	No
RNA-CE 18TGGATGATCCACGGTGCAAAATTGTAGCAAAGCCCGCCTT $(TTG)_5$ 371 YesRNA-CE 19ACTAGTCACACACACAGGGCCCACCATGGCTTGTCTTT $(GGAT)_5$ 195YesRNA-CE 20GATGACGACGACGATGACGATACCCCTCCAGCTTGCTCCAG $(GGA)_5$ 146NoRNA-CE 21CCGTGTTGAATTGCTCCGTGATGTTCTTGGAGAGCAGGC $(GGC)_5$ 256YesRNA-CE 22AAAGAGGAGAGGGGCTAGGGTGTTGTGGGCCTGGTCAAAT $(GGC)_5$ 256YesRNA-CE 23CCCTCATCTCCCACGCTCAAGGGATGAGGAGAGGCTGAGGTTG $(CGT)_5$ 158YesRNA-CE 24ACGATCAAGGACAAGTGCCGCCTTGAGTTCTCGAGGATCTCGT $(GCG)_5$ 309YesRNA-CE 25CTCCTCCTCTTCTGTGCTCTACCCCTGTGGAGTTCACC $(GCG)_5$ 363NoRNA-CE 27TCACAGGAGAGACGATGTCTGTCTGCGAGAGTCACCGAGGAGGGGGG $(GGC)_5$ 362NoRNA-CE 28CTCTCCCCAGCTCACGCTGGGGAAGGAGGAGGAGGGTGT $(TCT)_{12}$ 217NoRNA-CE 32GTGGGGGTGATGATGAGCATCCACGTCCTCCACC $(GGC)_5$ 362NoRNA-CE 33AGGCGCAAGGAGAGAGAGAGGCATCCACGTCCTCAACA $(GGC)_5$ 291NoRNA-CE 34CTTCCCTCATCACCCTTATCAGAAAAGAGGGGAGAGGGGA $(GCT)_6$ 261YesRNA-CE 33CTGGCGCAGGAGAGAGAGTGCTGTTGGCTCCAACA $(GGC)_5$ 389NoRNA-CE 34CTTCCCTCATCACCCGAGAGAAGGGGAGAGGGCAGAGGGAGCGGA $(CCT)_5$ 345YesRNA-CE 38CTACCCAGAAAGCAAGAGAGTGCGTGTTGGCTCGATCCAT $(CGG)_5$ 267No <td< td=""><td>RNA-CE 17</td><td>TGGTGGTGCTTTGTTCAGGT</td><td>GCTTCTCCAAACGCCACATC</td><td>(AGA)</td><td>271</td><td>Yes</td></td<>	RNA-CE 17	TGGTGGTGCTTTGTTCAGGT	GCTTCTCCAAACGCCACATC	(AGA)	271	Yes
RNA-CE 19ACTAGTCACACACAGAGGGCCCACCATGGCTTGTCTTCT $(GGAT)_5$ 195YesRNA-CE 20GATGACGACGACGAGAGAGGATACCCCTCCAGCTTCTCCAG $(GCA)_5$ 146NoRNA-CE 21CCGTGTTGAATTGCTCCGTGATGTTCTTGGAGAGGCAGGC $(GGC)_5$ 256YesRNA-CE 23CCCTCATCTCCAGCGCTCAAGGGATGAGGAGGCTGGGCTAGGC $(GGC)_5$ 158YesRNA-CE 24ACGATCAAGGACAAGTCGCCGCCTCTAGTTCTCGAAGGCC $(GCA)_5$ 121NoRNA-CE 25TCCTCCCTCTTCTGTGTCCTTACCCCTGTGGACATTCGT $(GCG)_5$ 124NoRNA-CE 26CTGCCAGAGCTCCACAGAACACCTGCAGGATGTGTGTGTGTGC $(GCC)_5$ 124NoRNA-CE 27TCACAGGAGGAGACCGATGTCCTGCTGGGAGTTGCACTC $(CAC)_5$ 363NoRNA-CE 28CTCTCTCCTCCATCAGTCGGGAAGGAGAGAGAGGAGGAGGAGGAGGAGGAGGAGGAG	RNA-CE 18	TGGATGATCCACGGTGCAAA	ATTGTAGCAAAGCCCGCCTT	(TTG)	371	Yes
RNA-CE 20GATGACGACGACGATGACGATACCCCTCCAGCTTCTCAG $(CGA)_5^{-2}$ 146NoRNA-CE 21CCGTGTTGAATTGCTCCCGGATGTTCTTGGAGAGGAGGC $(GCG)_5$ 143NoRNA-CE 22AAAGAGAGAGGGCTCAGGGTGTGGTGGCCGGTCAAAT $(GGC)_5$ 256YesRNA-CE 23CCCTCATCTCCAGCGCTCAAGGGATGAGGAGGCTGAGGTG $(GGC)_5$ 121NoRNA-CE 24ACGATCAAGGACGACAGTGCCGCCTCTAGTTCTCGAAGGCC $(GCC)_5$ 124NoRNA-CE 25TCCTCCCTCTCTCTGTGGCTCTACCCCTGCAGGATGTGTGTGTCC $(GCC)_5$ 124NoRNA-CE 26CTGCAGAGCTCCACAGAACACCTGCAGGATGTGTGAGTC $(GCC)_5$ 124NoRNA-CE 27TCACAGGAGGAGCGATGTCCTGCTGCGGAGTTCACC $(GCC)_5$ 124NoRNA-CE 32CTCCTCCTCCTCCCCCGGGGAAGGAGAGGAGGAGGAGTGT $(TT)_{12}$ 217NoRNA-CE 32CTCGGGGTCATCCTCAGTCTTTAGCAAAACAAGCCGCCG $(GGC)_5$ 362NoRNA-CE 33AGGCGCAAGGAGAAGAACCTATCTCGCCGTCTCCACAC $(GGC)_5$ 291NoRNA-CE 34CTTCCCCTCATCACCACGCGTGAGAAGAGGGGTGTCCCAC $(GGC)_5$ 291NoRNA-CE 35CTTCTCCTCTCGCCTCATCCCTAAGAAGGGGATGAGGGGGA $(CCT)_5$ 121NoRNA-CE 36CTTACCCCATACCACACCGAGGGAGGGGAGACACAG $(TAG)_5$ 389NoRNA-CE 37TTAAGCCCGAGGAGCACATGTAGTGCGGGGAGGCGCAC $(TAG)_5$ 389NoRNA-CE 39ATCACAGGAGGAGGAGGAGCACATGTGGTGGTCGGGACTTTGCTG $(CG)_5$ 276YesRNA-CE 40 <td>RNA-CE 19</td> <td>ACTAGTCACACACAGGCG</td> <td>CCCACCATGGCTTGTCTTCT</td> <td>(GGAT),</td> <td>195</td> <td>Yes</td>	RNA-CE 19	ACTAGTCACACACAGGCG	CCCACCATGGCTTGTCTTCT	(GGAT),	195	Yes
RNA-CE 21CCGTGTTGAATTGCTCCGTGATGTTCTTGGAGAGGCAGGC(GCG)_5143NoRNA-CE 22AAAGAGGAGAGGGGCTAGGGTGTTGGTGGCCTGGTCAAAT(GGC)_5256YesRNA-CE 23CCCTCATCTCCACGCTCAAGGGATGAGGAGGCTGAGGTG(CGT)_5158YesRNA-CE 24ACGATCAAGGACAAGTCGCCGCCTCTAGTTCTGAAGGCC(GCA)_5121NoRNA-CE 25TCCTCCCTCTCTGTGGTCTACCCTGGAGTCTGGATCTTCGT(GCG)_5124NoRNA-CE 26CTGCAGAGCTCCACAGAACACCTGCTGGGATGTGAGTCC(GCC)_5124NoRNA-CE 27TCACAGGAGAGACCGATGTCCTGTCTGCGGAGTGTGAGTCC(GCC)_5363NoRNA-CE 28CTCTCTCTCCTCATCTCCCCGGGAAGGAAGGAGGAGGAGGAGTGT(TT)_12217NoRNA-CE 29CAGCCAGGTCATCCTAAGAATGCATCCACGGCTCTCAACA(GGC)_5132NoRNA-CE 32GTCGGGGTCGTCTAAGAAGTGCATCCACGCTCTCCAACA(GGC)_5291NoRNA-CE 34CTTCCCCTCATCACCCCGGCTGAAGAGGGGGGGA(CT)_5121NoRNA-CE 35CTGTCTCTGCGCATCCCCTAAGAAGGGGAGGAGGCGGA(CT)_5121NoRNA-CE 37TTAATGCCGCTGCAGAGCGCTGTGTGGCAGAGGGGGGA(CG)_5356YesRNA-CE 38CTAGCTTTGCCACATGCGCACAGCAGAAGGAGGCCACTTAGGCGGAGGAGACACAGGYesRNA-CE 39ATACACAGCAGAAGGAGCACCATGTAGTGCTGGAGTCTGT(CA)_5345YesRNA-CE 30ATGACCCAGAGAGGAGCCACTGTAGTGCTGGAGTCTGTGT(CA)_5345YesRNA-CE 34ATACCTTGCCTCACCCCCGGCTAGGA	RNA-CE 20	GATGACGACGACGATGACGA	TACCCCTCCAGCTTCTCCAG	(CGA)	146	No
RNA-CE 22AAAGAGGAGGGGGCTAGGGTGTTGGTGGCCTGGTCAAAT $(GGC)_{2}^{3}$ 256YesRNA-CE 23CCCTCATCTCCACGCTCAAGGGATGAGGAGGCTGAGGTTG $(CGT)_{5}$ 158YesRNA-CE 24ACGATCAAGGACAAGTCGCCGCCTTAGTTCTGAAGGCC $(GCA)_{8}$ 121NoRNA-CE 25TCCTCCCTCTCTGTGGTCTACCCCTGTCGGAGTCTTCGT $(GCG)_{5}$ 309YesRNA-CE 26CTGCAGAGCTCCACAGAACACCTGCAGGATCGTGTAGTCC $(GCC)_{5}$ 124NoRNA-CE 27TCACAGGAGGAGACGATGTCCTGTCTGCGAAGTTCACCT $(CAC)_{5}$ 363NoRNA-CE 28CTCTCTCCTCCATCATCCTCCGGGGGAAGGAGGAGGAGGAGGCGGGGC)_{5}322NoRNA-CE 29CAGCCAGGTCATCCAAGAAGGCCTCCCAGCAAA $(GGC)_{5}$ 362NoRNA-CE 32GTGCGGGGCTGTTCAAGAAGTGCATCCACGTCCTCGAAGAA $(GGC)_{5}$ 321NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCAACA $(GGC)_{5}$ 291NoRNA-CE 34CTTCCCTCATCACACCACCGGCTGAGAAGAGGGGTGTTCC $(GGC)_{6}$ 356YesRNA-CE 37TTAATGCCCCTGCCGATGTTGCATCTAGCACAGGGACATGGATCCT $(CAO)_{6}$ 343NoRNA-CE 39ATCACAGCAAGAGAGAGCACCTGTGGTGGTGGATGCTTG $(CAO)_{6}$ 345YesRNA-CE 39ATCACAGCAAGAGAGAGCACCTGTAGCAGGGGAACACGGGGACCCC $(GGG)_{8}$ 267NoRNA-CE 37TTAATGCCCCTGCAGCACTGTAGGAGGTGCTTGCT $(CAO)_{6}$ 345YesRNA-CE 38CTAGCTTTGCTTGCTGCTGTGCTGGAGCACT $(GGG)_{8}$ 267No	RNA-CE 21	CCGTGTTGAATTGCTCCGTG	ATGTTCTTGGAGAGGCAGGC	(GCG)	143	No
RNA-CE 23CCCTCATCTCCACGCTCAAGGGATGAGGAGGCTGAGGTTG $(CTT)_{2}^{5}$ 158YesRNA-CE 24ACGATCAAGGACAAGTCGCCGCCTCTAGTTCTCGAAGGCC $(GCA)_{5}$ 121NoRNA-CE 25TCCTCCCTCTTCTGTGTCCTACCCCTGTGGATCTTCGT $(GCG)_{5}$ 309YesRNA-CE 26CTGCAGAGGCCACAGAACACCTGCAGGATGTGATGCC $(GCG)_{5}$ 363NoRNA-CE 27TCACAGGAGGAGGAGGATGTCCTGTCTGCGGAAGTTCACCT $(ACG)_{5}$ 362NoRNA-CE 28CTCTCCTCCTCCTCATCTCAGTCTTTAGCAAAACAAGCCGCGG $(GGC)_{5}$ 362NoRNA-CE 32GTCGGGGTCATCCTCAGTCTTTAGCAAAACAAGCCGCCG $(GGC)_{5}$ 362NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCAAGAA $(GGC)_{5}$ 291NoRNA-CE 34CTTCCCCTATCACACCCGCTGAGAAGAGGGTGTTCC $(GCT)_{6}$ 261YesRNA-CE 35CTTCCCTCATCACACCCCGCTGAGAAGAGGGGTGTCC $(GCG)_{6}$ 356YesRNA-CE 36TGAGTCCCAAGAAGAGGAGCAGTGTGTTTGGCTCGATCCT $(CAG)_{5}$ 389NoRNA-CE 37TTAATGCCGCTGCGATGTTCATCTAGCCAACAGGTGCACA $(TAG)_{5}$ 389NoRNA-CE 37TTAATGCCGCTGCGATGTTCCGGGAGACGAGAGTCT $(CAC)_{5}$ 345YesRNA-CE 39ATCACAGAAAGAGGAGCACTGTGTGTCGCGGAGACCA $(TAG)_{5}$ 345YesRNA-CE 40CCGCCAAATCCTCAGACCCTGTGGGTGGAGTCTCAT $(CGG)_{5}$ 276NoRNA-CE 41AGACCCCTACACGAAGAGGTTCGTGGTGTGTGTGGTGGAC $(GC)_{5}$ 355No <td>RNA-CE 22</td> <td>AAAGAGGAGAGGGGCTAGGG</td> <td>TGTTGGTGGCCTGGTCAAAT</td> <td>(GGC)</td> <td>256</td> <td>Yes</td>	RNA-CE 22	AAAGAGGAGAGGGGCTAGGG	TGTTGGTGGCCTGGTCAAAT	(GGC)	256	Yes
RNA-CE 24ACGATCAAGGACAAGTCGCCGCCTCTAGTTCTCGAAGGCC $(GCA)_5$ 121NoRNA-CE 25TCCTCCCTCTCTGTGCTCTACCCCTGCGAGTCTTCGT $(GCG)_5$ 309YesRNA-CE 26CTGCAGAGCTCCAAGAACACCTGCAGGATCGTGTAGTCC $(GCC)_5$ 124NoRNA-CE 27TCACAGGAGGAGACGATGTCCTGTCGCAGGATCGTGTAGTCC $(GCC)_5$ 363NoRNA-CE 28CTCTCTCCTCCTCCTCCTCCGGGGAAGGAGAGAGAGAGAGTGT $(TCT)_{12}$ 217NoRNA-CE 29CAGCCAGGTCATCCTCAGTCTTTAGCAAAACAAGCCGCCG $(GGC)_5$ 362NoRNA-CE 32GTCGGGGGTGTTCAAGAAGTGCATCCACGTCCTCAAGAA $(GGC)_5$ 132NoRNA-CE 33AGGCCCAAGGGATAATGAACCTATCTCGCCGTCTCACAC $(GGC)_5$ 291NoRNA-CE 34CTTCTCCTCACACCACCGGCTGAGAGAGGAGGAGGAGGAGGCGGA $(CT)_5$ 211NoRNA-CE 35CTTCTCTTCGCCCTCACCCTAAGAAGGGATGAGCGGAGA $(GCT)_5$ 321NoRNA-CE 36TGAGTCCCAAGAAGCAGCAGTGCTGTTTGGCTCACAC $(GGG)_6$ 356YesRNA-CE 37TTAATGCCGCTGCGATGTTGCATCTAGCCACAGGGGATCCTA $(CGG)_6$ 345YesRNA-CE 38CTAGCATGAGAGGAGCCACTGTAGTGCTGGGGATCTTAG $(CAC)_5$ 243NoRNA-CE 39ATCACAGCAAAGAGGGCACCTGTAGTGCTGGGGATCTTAGTCCC $(CAC)_5$ 245YesRNA-CE 40CGCCAAATCCTCAGAGACCATGGGGGAACAACAGGCD,164NoRNA-CE 41AGACCCTACCAACGAAGAAGTCTCGAGGACCATGGGGGA,149YesRNA-CE 42GCTGCTCTGCCC	RNA-CE 23	CCCTCATCTCCACGCTCAAG	GGATGAGGAGGCTGAGGTTG	(CGT)	158	Yes
RNA-CE 25TCCTCCCTTCTCTGTGCCTTACCCCTGTCGGATCTTCGT $(GCG)_5$ 309YesRNA-CE 26CTGCAGAGCTCCACAGAACACCTGCAGGAGTCGTGTAGTCC $(GCC)_5$ 124NoRNA-CE 27TCACAGGAGGAGACCGATGTCCTGTCTGCGAAGTTCACCT $(CAC)_5$ 363NoRNA-CE 28CTCTCTCCTCCACTCCCCGGGGAAGGAGGAGGAGGAGGAGGATGT $(TCT)_{12}$ 217NoRNA-CE 29CAGCCAGGTCATCCTCAGTCTTTAGCAAAACAAGCCGCCG $(GGC)_5$ 362NoRNA-CE 32GTCGGGGTCGTTCAAGACTGCATCCACGTCTCACAC $(GGC)_5$ 291NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCACAC $(GGC)_5$ 261YesRNA-CE 34CTTCCCTCACACACACACCGGCTGAGAAGAGGGGTGTTCC $(GCT)_6$ 261YesRNA-CE 35CTTCTCCTTCGCCTCATCCCTAAGAAGGGGATGAAGGCGGA $(CCT)_5$ 121NoRNA-CE 36TGAGTCCCAAGAAGAGCAGCAGTGCTGTTTGGCTCGATCCAT $(CGG)_6$ 356YesRNA-CE 37TTAATGCCGCTGCGATGTTGCATCTAGCCACAGGTGGACCAT $(CAC)_5$ 345YesRNA-CE 38CTAGCTTTGCCACTGCGCACAGCAGAGAGTCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAAGCAGAGAGCACTGTAGTGCCGGGAGCACATGGGACCAT $(CGG)_5$ 267NoRNA-CE 41AGACCCTAACGAAGCTTCTCCGGGGTGGTTTGAGGAACA $(GCG)_5$ 276YesRNA-CE 42GCTGCTGTCTCCACTGTGGGTGGATCTGAGACAGA $(GCG)_5$ 155YesRNA-CE 43AATACTCTCCCCTCCCACCGGGTGGTGTTGAGGACCA $(GGG)_5$ 155YesRNA-C	RNA-CE 24	ACGATCAAGGACAAGTCGCC	GCCTCTAGTTCTCGAAGGCC	(GCA)	121	No
RNA-CE 26CTGCAGAGCTCCACAGAACACCTGCAGGAGCTGTGTAGTCC $(GC)_{5}$ 124NoRNA-CE 27TCACAGGAGGAGACCGATGTCCTGTCTGCGAAGTTCACCT $(CAC)_{5}$ 363NoRNA-CE 28CTCTCTCCTCCATCCTCCCCGGGGAAGGAGGAGGAGGAGGATGT $(TCT)_{12}$ 217NoRNA-CE 29CAGCCAGGTCATCCTCAGTCTTTAGCAAAACAAGCCGCCG $(GGC)_{5}$ 362NoRNA-CE 32GTCGGGGTCGTTCAAGAAGTGCATCCACGTCCTCGAAGAA $(GGC)_{5}$ 291NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCAACAC $(GGC)_{5}$ 291NoRNA-CE 34CTTCCCCTCATCACCACCCCGGCTGAGAAGAGGGGTGTTCC $(GCT)_{6}$ 261YesRNA-CE 35CTTCTCCTTCGCCTCATCCCTAAGAAGGGGTGTCCC $(GCG)_{6}$ 356YesRNA-CE 36TGAGTCCCAAGAAGACAGCAGTGCTGTTTGGCTCGATCCAT $(CGG)_{6}$ 356YesRNA-CE 37TTAATGCCGCTGCGGATGTTGCATCTAGCCACAGGTGCACA $(TAG)_{5}$ 389NoRNA-CE 38CTAGCTTTGCTGCCACTGCGCACAGCAGACATGGATCCT $(CA)_{6}$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCTGATGATGATGATGATGATGATGATGATGATGATGATGAGGCNoNoRNA-CE 40CCGCAAAGCAGAGGCCACTGTAGTGCTGGAAGTTTGCTTGT $(CCG)_{5}$ 267NoRNA-CE 41AGACCCTTCACCTAGACCTTGTGCGGGAGGAACACAGGGCGTGTGTCTGCACTTGNoRNA-CE 42GCTGCTCTGTCCCACCTGGCTGTGTGTGATGATGAGGAC $(GCG)_{5}$ 155YesRNA-CE 43AATACTCTCCCCCCACCAGGCTTGTGACGGAGAGCAC $(GGG)_{5}$	RNA-CE 25	тсстссстстстстдтдстс	TACCCCTGTCGGATCTTCGT	(GCG)	309	Yes
RNA-CE 27TCACAGGAGGAGACCGATGTCCTGTCTGCGAAGTTCACCTCCAS CAS363NoRNA-CE 28CTCTCTCCTCCATCCTCCCGGGGAAGGAGGAGAGGAGAGGAGGAGGAGGAGGAGGAGG	RNA-CE 26	CTGCAGAGCTCCACAGAACA	CCTGCAGGATCGTGTAGTCC	(GCC)	124	No
RNA-CE 28CTCTCTCCTCCATCCTCCCCGGGGAAGGAGGAGGAGGAGGAGGATGT $(TCT)_{12}$ 217NoRNA-CE 29CAGCCAGGTCATCCTCAGCCTTTAGCAAAACAAGCCGCCG(GGC)_5362NoRNA-CE 32GTCGGGGTCGTTCAAGAAGTGCATCCACGTCCTCGAAGAA(GGC)_5132NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCACAC(GGC)_5291NoRNA-CE 34CTTCCCCTATCACACCACCGGCTGAGAAGAGGGGTGTTCC(GCT)_6261YesRNA-CE 35CTTCTCCTTCGCCTATCCCTAAGAAGGGGATGAAGGCGGA(CCT)_5121NoRNA-CE 36TGAGTCCCAAGAAGCAGCAGTGCTGTTTGGCTCGATCCAT(CGG)_6356YesRNA-CE 37TTAATGCCGCTGCGGATGTTGCATCTAGCCACAGGTGCACA(TAG)_5389NoRNA-CE 38CTAGCATGCTGCCGCGGAGCACGCACAGCAGACATGGATCCTC(CAC)_5345YesRNA-CE 40CCGCAAAACCCTACAGAGCCCTGTGGGTGGATTTGCTGGCGGACCCGTCTCGGGTGGATTTGCTGT(CGG)_5267NoRNA-CE 41AGACCCCTACACGAGACTTCTCCGGGTACTGATGATGATGAGGC(CGC)_7164NoNoRNA-CE 42GCTGCTCTGTCCACTGTGCTTACGAGGTTCCGAACCA(GCG)_5155YesRNA-CE 43AATACTCTCCCCCCCACCGCTCTCGTACTACCAGCAGCA(GGC)_7137YesRNA-CE 44GTGCGAGGAGAACATGAGGCCAGAGCGACAGAGGAGCACT(GGC)_7137YesRNA-CE 45TCCTAGCTGACCGAAAGGGCCAGAGCGACAGAGGAGCACT(GGC)_5383YesRNA-CE 46GAGAGCGAAGAAGAGGCCGTTCTACCCACCCAAGAACGTAC(AGG)_5381 <td>RNA-CE 27</td> <td>TCACAGGAGGAGACCGATGT</td> <td>CCTGTCTGCGAAGTTCACCT</td> <td>(CAC)</td> <td>363</td> <td>No</td>	RNA-CE 27	TCACAGGAGGAGACCGATGT	CCTGTCTGCGAAGTTCACCT	(CAC)	363	No
RNA-CE 29CAGCCAGGTCATCCTCAGTCTTTAGCAAAACAAGCCGCCG $(GGC)_5$ 362 NoRNA-CE 32GTCGGGGTCGTTCAAGAAGTGCATCCACGTCCTCGAAGAA $(GGC)_5$ 132NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCACAC $(GGC)_5$ 291NoRNA-CE 34CTTCCCCTCATCACACCACCGGCTGAGAAGAGGGGTGTTCC $(GCT)_6$ 261YesRNA-CE 35CTTCTCCTTCGCCTCATCCCTAAGAAGGGGATGAGGGGGA $(CCT)_5$ 121NoRNA-CE 36TGAGTCCCAAGAAGCAGTGCTGTTTGGCTCGATCCAT $(CGG)_6$ 356YesRNA-CE 37TTAATGCCGCGGATGTTGCATCTAGCCACAGGGACCAC $(TAG)_5$ 389NoRNA-CE 38CTAGCTTGGCTGCCATGCGCACAGCAGACATGGATCCT $(CA)_6$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCACTGTAGTGCTCGGGATCTCA $(CCG)_5$ 267NoRNA-CE 40CCGCAAATCCTCAGAGGCCACTGTAGTGCTGGAGTGTTG $(CCG)_5$ 276YesRNA-CE 41AGACCCCTACCACGAGCTTCTCCGGGTGGATTGAGTGAGGAGC $(GCG)_5$ 149YesRNA-CE 43AATACTCTCCCCTCCCCCACCGCTCTGTACTACCAGCAG $(GGG)_5$ 155YesRNA-CE 44GTGCGAGAGGAAACACAGATCGGTGTGCTTGTAGTGAGCAACCGAAGCA $(GGC)_7$ 137YesRNA-CE 45TCCTAGCTGACGAGAGGGACAGGCCAAGCAGGGACAC $(GGC)_7$ 137YesRNA-CE 48TATACATGCCCAGCGACAGAGGCACAGGCTCATCACCCAC $(AGGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTCGCGCT $(GGC)_7$ 137YesRNA-C	RNA-CE 28	CTCTCTCCTCCATCCTCCCC	GGGGAAGGAGGAGAGGATGT	(TCT)	217	No
RNA-CE 32GTCGGGGTCGTTCAAGAAGTGCATCCACGTCCTCGAAGAA $(GGC)_5$ 132NoRNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCACAC $(GGC)_5$ 291NoRNA-CE 34CTTCCCTCATCACACCACCGGCTGAGAAGAGGGGTGTTCC $(GGC)_5$ 261YesRNA-CE 35CTTCTCCTTCGCCTCATCCCTAAGAAGGGGATGAGGCGGA $(CCT)_5$ 121NoRNA-CE 36TGAGTCCCAAGAAGAGCAGGTGCTGTTTGGCTCGATCCAT $(CGG)_6$ 356YesRNA-CE 37TTAATGCCGCTGCATGTTGCATCTAGCCACAGGTGCACA $(TAG)_5$ 389NoRNA-CE 38CTAGCTTTGCTTGCCACTGCGCACAGCAGACATGGATCCT $(CAC)_5$ 345YesRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCCTGAT $(CCG)_5$ 267NoRNA-CE 40CCGCAAATCCTCAGAACCTTGTGCGGTGGATTTGGTTGCGGAACA $(GGC)_5$ 276YesRNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTACTGATGATGAGGC $(CGG)_5$ 155YesRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GGC)_5$ 155YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTCTCGTACTACCAGCAGA $(GGC)_5$ 155YesRNA-CE 44GTGCGAGAGGAAACACAGATCGGTGTGCTTGAGGAAC $(GGC)_5$ 381NoRNA-CE 45TCCTAGCTGACCGAACAAGAGGACAGCGCAAGAGAGGCACAGCGTTAGCAAGAAGGTC $(GGC)_5$ 381NoRNA-CE 46GAGAGCGAGAGACATGAGGACAGCGTTTAGCAACAAGAAGGTGC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGAGAACAGAGGCAGACGTCTCTCTCTCGTCTTCTGCGTCT $(GGC)_5$ <t< td=""><td>RNA-CE 29</td><td>CAGCCAGGTCATCCTCAGTC</td><td>TTTAGCAAAACAAGCCGCCG</td><td>(GGC)</td><td>362</td><td>No</td></t<>	RNA-CE 29	CAGCCAGGTCATCCTCAGTC	TTTAGCAAAACAAGCCGCCG	(GGC)	362	No
RNA-CE 33AGGCGCAAGGGATGAATGAACCTATCTCGCCGTCTCACAC $(GGC)_5$ 291NoRNA-CE 34CTTCCCTCATCACACCACCGGCTGAGAAGAGGGGTGTTCC $(GCT)_6$ 261YesRNA-CE 35CTTCTCTTCGCCCTATCCCTAAGAAGGGGATGAAGGCGGA $(CCT)_5$ 121NoRNA-CE 36TGAGTCCCAAGAAGCAGCAGTGCTGTTTGGCTCGATCCAT $(CGG)_6$ 356YesRNA-CE 37TTAATGCCGCTGCCATGCGCACAGCAGGAGCACA $(TAG)_5$ 389NoRNA-CE 38CTAGCTTTGCCACTGCGCACAGCAGCAGACATGGATCCT $(CA)_6$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTGCTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTGGATTTGCGGAACA $(GCG)_5$ 276YesRNA-CE 42GCTGCTCTGTCTCCACTTGGCTTACGAGGTTCCGGAACA $(GCG)_5$ 155YesRNA-CE 43AATACTCCCCCTCCCACCGCTCTGTACTGAGGACA $(GGG)_5$ 155YesRNA-CE 44GTGCGAGAGGAAACACAGATCGGTGTGCTTGTAGTGAGAC $(GGG)_6$ 365NoRNA-CE 45TCCTAGCTGACCGACACACAGAGACGCACAGGCCAAGCAAGCAGAGACAC $(GGC)_7$ 137YesRNA-CE 46GAGAGCGAGAGACATGAGGCCAGACGTGCTCATCACCAAGCAAGCAGGTC $(GG)_5$ 381NoRNA-CE 47TGCCGAGGAACAGAAGTGCACCCTAGCCTTCTCGCGTCT $(GG)_5$ 381NoRNA-CE 49GACATCCTCGTCGTCTCCCTAGCTCTCTCGCGTCT $(GG)_5$ 381NoRNA-CE 49 </td <td>RNA-CE 32</td> <td>GTCGGGGTCGTTCAAGAAGT</td> <td>GCATCCACGTCCTCGAAGAA</td> <td>(GGC)</td> <td>132</td> <td>No</td>	RNA-CE 32	GTCGGGGTCGTTCAAGAAGT	GCATCCACGTCCTCGAAGAA	(GGC)	132	No
RNA-CE 34CTTCCCCTCATCACACCACCGGCTGAGAAGAGGGGTGTTCC $(GCT)_5$ 261YesRNA-CE 35CTTCTCCTTCGCCTCATCCCTAAGAAGGGGATGAGGCGGA $(CCT)_5$ 121NoRNA-CE 36TGAGTCCCAAGAAGCAGCAGTGCTGTTTGGCTCGATCCAT $(CGG)_6$ 356YesRNA-CE 37TTAATGCCGCTGCGATGTGCATCTAGCCACAGGTGCACA $(TAG)_5$ 389NoRNA-CE 38CTAGCTTTGCTTGCCACTGCGCACAGCAGAGACATGGATCCT $(CA)_6$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTGCTTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCTACACGAGCTTCTCCGGGTACTGATGATGAGGC $(CGC)_7$ 164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_5$ 276YesRNA-CE 43AATACTCTCCCCCCCACCGCTCTCGTACTACCAGCAG $(AG)_8$ 149YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGAGGACC $(GGC)_5$ 155YesRNA-CE 45TCCTAGCTGACCGAACTACCAGGCTTAGCAAGCAGAGGTAC $(GGC)_7$ 137YesRNA-CE 46GAGAGCGAGACATGAGGCACAGGCCAAGCAAGAAGGTAC $(GG)_5$ 381NoRNA-CE 47TGCCGAGGACAGAAGAGGCCTAGCCTTCTTGCGTCT $(GT)_8$ 383YesRNA-CE 48TATACATGCCCAGCGACGACCCTAGCTTCTTGCGTCT $(GG)_5$ 381NoRNA-CE 49GAACTCCTCGTGTGTCTCCCTAGTCTTCTGCGTCT $(GG)_5$ 383YesRNA-CE 49GAACTCCTC	RNA-CE 33	AGGCGCAAGGGATGAATGAA	CCTATCTCGCCGTCTCACAC	(GGC)	291	No
RNA-CE 35CTTCTCCTTCGCCTCATCCCTAAGAAGGGGATGAGGGGGA(ICC)RNA-CE 36TGAGTCCCAAGAAGCAGCAGTGCTGTTTGGCTCGATCCAT(CGG)356YesRNA-CE 37TTAATGCCGCTGCGATGTTGCATCTAGCCACAGGTGCACA(TAG)389NoRNA-CE 38CTAGCTTTGCTTGCCACTGCGCACAGCAGACATGGATCCT(CAC)243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCCTCA(CAC)345YesRNA-CE 40CCGCAAATCCTCAGAGACCTGTGCGGTGGATTTGCTTGT(CCG)267NoRNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTACTGATGAGGC(CGC)164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA(GCG)276YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTTACGAGGTTCCGGAACA(GCG)149YesRNA-CE 44GTGCGAGAGGAACACAGATCGGTGTGCTTGTAGTGGAC(GCG)365NoRNA-CE 45TCCTAGCTGACCGAACACAGATCGGTGTCTTAGCAACGAAGAGCT(CGG)365NoRNA-CE 46GAAGCGAGAGAACTGAGGCACAGGCCAAGCAAGAAGTAC(GGC)137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA(AGG)381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTCGCGTCT(GT)383YesRNA-CE 49GACATCCTCGTCGTCTCCTAGCTTCTTCTCGCGTCT(GG)381NoRNA-CE 49GACATCCTCGTCGTCTCCTAGCTTCTTCTCGCGTCT(GG)383YesRNA-CE 450AAGGGAAGAAGTGCTACCCGACATCCTCGTCGTCTCCTAGCTTCTTCTCGGGCG(CAA) <td>RNA-CE 34</td> <td>CTTCCCCTCATCACACCACC</td> <td>GGCTGAGAAGAGGGTGTTCC</td> <td>(GCT)</td> <td>261</td> <td>Yes</td>	RNA-CE 34	CTTCCCCTCATCACACCACC	GGCTGAGAAGAGGGTGTTCC	(GCT)	261	Yes
RNA-CE 36TGAGTCCCAAGAAGCAGCAGTGCTGTTTGGCTCGATCCAT $(CGG)_6$ 356YesRNA-CE 37TTAATGCCGCTGCGATGTTGCATCTAGCCACAGGTGCACA $(TAG)_5$ 389NoRNA-CE 38CTAGCTTTGCTTGCCACTGCGCACAGCAGACATGGATCCT $(CA)_6$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGGATCCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTTGCTTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCCTACAGGAGCTTCTCCGGGTACTGATGATGAGGC $(CGC)_7$ 164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_5$ 276YesRNA-CE 43AATACTCTCCCCTCCCCCACCGCTCTCGTACTACCAGCAG $(AG)_8$ 149YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGAGCA $(GCG)_5$ 155YesRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT $(CGG)_6$ 365NoRNA-CE 46GAAGAGCGAGAGAACATGAGGCACAGGCCAAGCAAGGAGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGGCAGACCTCACCCAAGCAAGAGGTAC $(GGC)_7$ 383YesRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTCGCGTCT $(GG)_8$ 381NoRNA-CE 49GACATCCTCGTCGTCCTCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGTGCTACCCGATCACCCAAGAACGTTGCG $(GGC)_7$ 117No	RNA-CE 35	CTTCTCCTTCGCCTCATCCC	TAAGAAGGGGATGAGGCGGA	(CCT)	121	No
RNA-CE 37TTAATGCCGCTGCGATGTTGCATCTAGCCACAGGTGCACA(TAG)_5389NoRNA-CE 38CTAGCTTTGCTTGCCACTGCGCACAGCAGGAGCATGGATCCT $(CA)_6$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTTGCTTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCCTACAGGAGCTTCTCCGGGTGCTGTGTGGGATCCGGGAACA $(GCG)_5$ 276YesRNA-CE 42GCTGCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_5$ 155YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTCTCGTACTACCAGCAG $(AG)_8$ 149YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GGG)_5$ 155YesRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAAGCAGAGGTAC $(GGC)_7$ 137YesRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGAGGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACCACTCCTAGCTTCTCTCGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCTCCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAAGAAGTGCTACCGGATCACCCAAGAACGTTGCG $(GGC)_1$ 117No	RNA-CE 36	TGAGTCCCAAGAAGCAGCAG	TGCTGTTTGGCTCGATCCAT	(CGG)	356	Yes
RNA-CE 38CTAGCTTTGCTGCCACTGCGCACAGCAGACATGGATCCT $(CA)_6$ 243NoRNA-CE 39ATCACAGCAAGAGGAGCCACTGTAGTGCTCGGGATCCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTTGCTTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTACTGATGATGAGGC $(CGC)_7$ 164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_5$ 276YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTCTCGTACTACAGCAG $(AG)_8$ 149YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GCG)_5$ 155YesRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT $(CGG)_6$ 365NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTTCTCTGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCTCCCTAGTCTTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGAGAGTGCTACGCGATCACCCCAAGAACGTTGCG $(GGC)_7$ 117No	RNA-CE 37	TTAATGCCGCTGCGATGTTG	CATCTAGCCACAGGTGCACA	(TAG)	389	No
RNA-CE 39ATCACAGCAAGAGAGAGCCACTGTAGTGCTCGGGATCCTCA $(CAC)_5$ 345YesRNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTTGCTTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTACTGATGATGAGGC $(CGC)_7$ 164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_5$ 276YesRNA-CE 43AATACTCTCCCCTCCCCCACCGCTCTCGTACTACCAGCAG $(AG)_8$ 149YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GCG)_5$ 155YesRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT $(CGG)_6$ 365NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGAGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCTCCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGAGGCTACGCGATCACCCCAAGAACGTTGCG $(GGC)_1$ 117No	RNA-CE 38	CTAGCTTTGCTTGCCACTGC	GCACAGCAGACATGGATCCT	(CA)_	243	No
RNA-CE 40CCGCAAATCCTCAGAACCCTGTGCGGTGGATTTTGCTTGT $(CCG)_5$ 267NoRNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTACTGATGATGAGGC $(CGC)_7$ 164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_5$ 276YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTTCCGTACTACAGCAG $(AG)_8$ 149YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GCG)_5$ 155YesRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT $(CGG)_6$ 365NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGAGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCGTCCCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGAGTGCTACGCGATCACCCAAGAACGTTGCG $(GGC)_1$ 117No	RNA-CE 39	ATCACAGCAAGAGGAGCCAC	TGTAGTGCTCGGGATCCTCA	(CAC)	345	Yes
RNA-CE 41AGACCCCTACACGAGCTTCTCCGGGTACTGATGATGAGGGC $(CGG)_5$ 164NoRNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTCCGGAACA $(GCG)_5$ 276YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTTACGAGGTCCGGAACA $(GCG)_5$ 155YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTTCGTGTGTCTGTAGTGGACC $(GCG)_5$ 155YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GCG)_5$ 155YesRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT $(CGG)_6$ 365NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGAGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCGTCTCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGAGGCTACGCGATCACCCAAGAACGTTGCG $(GGC)_1$ 117No	RNA-CE 40	CCGCAAATCCTCAGAACCCT	GTGCGGTGGATTTTGCTTGT	(CCG)	267	No
RNA-CE 42GCTGCTCTGTCTCCACTTGTGCTTACGAGGTTCCGGAACA $(GCG)_7$ 276YesRNA-CE 43AATACTCTCCCCTCCCCACCGCTTCCGTACTACCAGCAG $(AG)_8$ 149YesRNA-CE 43GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GCG)_5$ 155YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC $(GCG)_5$ 365NoRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT $(CGG)_6$ 365NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGAGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCGTCTCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGAGGCTACGCGATCACCCCAAGAACGTTGCG $(GGC)_1$ 117No	RNA-CE 41	AGACCCCTACACGAGCTTCT	CCGGGTACTGATGATGAGGC	(CGC)	164	No
RNA-CE 43AATACTCTCCCCCCCCCCGCTCTCGTACTACCAGCAG(AG) ₈ 149YesRNA-CE 43GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC(GCG) ₅ 155YesRNA-CE 44GTGCGAGAGGGAAACACAGATCGGTGTGCTTGTAGTGGAC(GCG) ₅ 365NoRNA-CE 45TCCTAGCTGACCGGACTACCAGGCTTTAGCAACCGAAGCT(CGG) ₆ 365NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGAGGTAC(GGC) ₇ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA(AGG) ₅ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTGCGTCT(GT) ₈ 383YesRNA-CE 49GACATCCTCGTCGTCGTCCTCCTAGTTCTTACCGGTGGCG(CGA) ₅ 232YesRNA-CE 50AAGGGGAAGAAGAGGCTACGCGATCACCCCAAGAACGTTGCG(GGC) ₋ 117No	RNA-CE 42	GCTGCTCTGTCTCCACTTGT	GCTTACGAGGTTCCGGAACA	(GCG)	276	Yes
RNA-CE 44 GTGCGAGAGGGGAAACACAGAA TCGGTGTGCTTGTAGTGGAC (GCG) ₅ 155 Yes RNA-CE 45 TCCTAGCTGACCGGACTACC AGGCTTTAGCAACCGAAGCT (CGG) ₆ 365 No RNA-CE 46 GAGAGCGAGAGACATGAGGC ACAGGCCAAGCAAGCAGGTACC (GGC) ₇ 137 Yes RNA-CE 47 TGCCGAGGACAGAAGAAGTG CAGACGTGCTCATCACCTCA (AGG) ₅ 381 No RNA-CE 48 TATACATGCCCAGCGACGAC TCCTAGCTTCTCTGCGTCT (GT) ₈ 383 Yes RNA-CE 49 GACATCCTCGTCGTCGTCC CCTAGTTCTTACCGGTGGCG (CGA) ₅ 232 Yes RNA-CE 50 AAGGGGAAGAAGTGCTACGC GATCACCCCAAGAACGTTGCG (GGC) ₂ 117 No	RNA-CF 43	AATACTCTCCCCTCCCCAC	CGCTCTCGTACTACCAGCAG	(AG)	149	Yes
RNA-CE 45TCCTAGCTGACCGGAGAGAGAGGGCAGGCTTTAGCAACCGAAGCT $(CGG)_5$ 265NoRNA-CE 46GAGAGCGAGAGACATGAGGCACAGGCCAAGCAAGCAGGGTAC $(GGC)_7$ 137YesRNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA $(AGG)_5$ 381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCTTCTCTGCGTCT $(GT)_8$ 383YesRNA-CE 49GACATCCTCGTCGTCGTCTCCTAGTTCTTACCGGTGGCG $(CGA)_5$ 232YesRNA-CE 50AAGGGGAAGAAGTGCTACGCGATCACCCCAAGAACGTTGCG $(GGC)_2$ 117No	RNA-CF 44	GTGCGAGAGGGAAACACAGA	TCGGTGTGCTTGTAGTGGAC	(GCG)	155	Yes
RNA-CE 46 GAGAGCGAGAGACATGAGGC ACAGGCCAAGCAAGAGGGTAC (GGC) ₇ 137 Yes RNA-CE 47 TGCCGAGGACAGAAGAGTG CAGACGTGCTCATCACCTCA (AGG) ₅ 381 No RNA-CE 48 TATACATGCCCAGCGACGAC TCCTAGCCTTCTCTGCGTCT (GT) ₈ 383 Yes RNA-CE 49 GACATCCTCGTCGTCGTCCT CCTAGTTCTTACCGGTGGCG (CGA) ₅ 232 Yes RNA-CE 50 AAGGGGAAGAAGTGCTACGC GATCACCCCAAGAACGTTGCG (GGC) ₂ 117 No	RNA-CE 45	TCCTAGCTGACCGGACTACC	AGGCTTTAGCAACCGAAGCT	(CGG)	365	No
RNA-CE 47TGCCGAGGACAGAAGAGTGCAGACGTGCTCATCACCTCA(AGG)_5381NoRNA-CE 48TATACATGCCCAGCGACGACTCCTAGCCTTCTCTGCGTCT(GT)_8383YesRNA-CE 49GACATCCTCGTCGTCGTCCTCCTAGTTCTTACCGGTGGCG(CGA)_5232YesRNA-CE 50AAGGGGAAGAAGTGCTACGCGATCACCCCAAGAACGTTGCG(GGC)_117No	RNA-CE 46	GAGAGCGAGAGACATGAGGC	ACAGGCCAAGCAAGAGGTAC	(GGC)	137	Yes
RNA-CE 48TATACATGCCCAGCGACGACTCCTAGCCTTCTTGCGTCT(GT)_8383YesRNA-CE 49GACATCCTCGTCGTCGTCCTCCTAGTTCTTACCGGTGGCG(CGA)_5232YesRNA-CE 50AAGGGGAAGAAGTGCTACGCGATCACCCAAGAACGTTGCG(GGC)_1117No	RNA-CF 47	TGCCGAGGACAGAAGAAGTG		(AGG)	381	No
RNA-CE 49GACATCCTCGTCGTCGTCTCCCTAGTTCTTACCGGTGGCG(CGA)_5232YesRNA-CE 50AAGGGGAAGAAGTGCTACGCGATCACCCAAGAACGTTGCG(GGC)_1117No	RNA-CF 48	TATACATGCCCAGCGACGAC	TCCTAGCCTTCTCTGCGTCT	(GT)	383	Yes
RNA-CE 50 AAGGGGAAGAAGTGCTACGC GATCACCCAAGAACGTTGCG (GGC). 117 No	RNA-CF 49	GACATCCTCGTCGTCGTCGTCTC	CCTAGTTCTTACCGGTGGCG	(CGA)	232	Yes
	RNA-CE 50	AAGGGGAAGAAGTGCTACGC	GATCACCCAAGAACGTTGCG	(GGC)	117	No

Cultivars	SSR (bp)						
	RNA-CE 05	RNA-CE 17	RNA-CE 43	RNA-CE 44	RNA-CE 46		
BRS Capiaçu	275 ^c	270 ^R	-	150 ^c /162 ^R	128 ^c		
BRS Canará	275 ^c	-	165	145 ^R /150 ^C /158 ^U	128 ^c		
BRS Kurumi	275 ^c /280 ^R /295 ^R	270 ^R	155	150 ^c /154/162 ^R	128 ^c		
Pioneiro	275 ^c	265	165	150 ^c /154	128 ^c /130 ^R		

Table 2. Alleles identified in each SSR marker used to differentiate *Cenchrus purpureus* cultivars. The alleles were labeled based on fragment size in the base pair (bp)

^c common allele (present in all samples)

^u unique allele (present in only one sample)

^R rare allele (present in a maximum of three samples)

with a parental of both cultivars, BAG 57, which could not be distinguished from BAG 105 (Supplementary Figure 3). Another group contained two other cultivars (BRS Canará and Pioneiro) with a similarity coefficient of 0.44. Although it was impossible to distinguish all samples using only these five markers, the dendrogram allowed for the differentiation of all cultivars. As expected, the cultivar pair with the highest similarity coefficient was BRS Capiaçu and BRS Kurumi (0.55) because they share a common parental line. The accessions that could not be distinguished in this study were identified and arranged with a higher similarity coefficient by Azevedo et al. (2012).

The development of a molecular marker set for Napier grass is crucial for breeding programs. This panel would aid in protecting intellectual property rights regarding cultivar products and could be used as an additional descriptor for registering and protecting a cultivar (Ercisli et al. 2011, Rauscher and Simko 2013, Scarano et al. 2015). Moreover, its unique molecular profile would facilitate the differentiation of kinship-related genotypes with similar phenotypic traits.

The molecular marker panel of the five SSR markers developed in this study is a reliable and cost-effective tool for identifying Napier grass. This test would assist breeders, germplasm collection curators, propagators, and growers in verifying the trueness-to-type information of cultivars.

ACKNOWLEDGMENTS

This study was supported by Embrapa-Brazilian Agricultural Research Corporation, Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES). Suplementary files are available upon request to the corresponding author (ana.azevedo@embrapa.br).

REFERENCES

- Ambawat S, Satyavathi CT, Meena RC, Meena R, Khandelwal V, Singh S and Geela R (2021) DNA Fingerprint of pearl millet hybrids [*Pennisetum* glaucum (L.) R. BR.] using SSR markers. The Pharma Innovation Journal 10: 07-13.
- Azevedo ALS, Costa PP, Machado JC, Machado MA, Pereira AV and Lédo FJS (2012) Cross-species amplification of *Pennisetum glaucum* microsatellite markers in *Pennisetum purpureum* and genetic diversity of Napier grass accessions. **Crop Science 52**: 1776-1785.
- Bassan BJ, Caetanoanollés G and Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. **Analytical Biochemistry 196**: 80-83.
- Beier S, Thiel T, Münch T, Scholz U and Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33: 2583-2585.
- Cavalcante M and Lira MA (2010) Variabilidade genética em *Pennisetum purpureum* Shumacher. **Revista Caatinga 23**: 153-163.
- Coombs J, Baldry CW and Bucke C (1973) The C-4 pathway in Pennisetum

purpureum. Planta 100: 95-107.

- Doyle JJ and Doyle JL (1987) A rapid DNA isolation from small amount of fresh leaf tissue. **Phytochem Bull 19**: 11-15.
- Ercisli S, Ipek A and Barut E (2011) SSR marker-based DNA fingerprinting and cultivar identification of olives (*Olea europaea*). **Biochemical Genetics 49**: 555-561.
- Fontoura CF, Brandão LE and Gomes LL (2015) Elephant grass biorefineries: towards a cleaner Brazilian energy matrix? Journal of Cleaner Production 86: 85-93.
- Habte E, Muktar MS, Abdena A, Hanson J, Sartie AM, Negawo AT, Machado JC, Ledo FJS and Jones CS (2020) Forage performance and detection of marker trait associations with potential for napier grass (*Cenchrus purpureus*) Improvement Agronomy 10: 542.
- Hanna WW (1981) Method of reproduction in napiergrass and in the 3X and 6X alloploid hybrids with pearl millet. Crop Science 21: 123.
- Jauhar PP (1981) Cytogenetics and breeding of pearl millet and related species. Alan R. Liss, New York, 289p.

ALS Azevedo et al.

- Karaagac E, Yilma S, Cuesta-Marcos A and Vales I (2014) Molecular analysis of potatoes from the pacific Northwest Tri-State cultivar development program and selection of markers for practical DNA fingerprinting applications. **American Journal of Potato Research 91**: 195-203.
- Kawube G, Alicai T, Wanjala B, Njahira M, Awalla J and Skilton R (2015) Genetic diversity in Napier grass (*Pennisetum purpureum*) assessed by SSR markers. The Journal of Agricultural Science 7: 147-155.
- Kongkeitkajorn MB, Sae-Kuay C and Reungsang A (2020) Evaluation of napier grass for bioethanol production through a fermentation process. Processes 8: 567.
- Le S, Ratnam W and Harwood CE (2016) A multiplexed set of microsatellite markers for discriminating *Acacia mangium*, *A. auriculiformis*, and their hybrid. **Tree Genetic & Genomes 12**: 31.
- Lima RSN, Daher RF, Gonçalves LSA, Rossi DA, Amaral Júnior AT, Pereira MG and Lédo FJS (2011) RAPD and ISSR markers in the evaluation of genetic divergence among accessions of elephant grass. **Genetics and Molecular Research 10**: 1304-1313.
- Makwana K, Tiwari S, Tripathi MK, Sharma AK, Pandya RK and Singh AK (2021) Morphological characterization and DNA fingerprinting of pearl millet (*Pennisetum Glaucum* (L.) germplasms. Range Management and Agroforestry 42: 205-211.
- McGregor C, Lambert C, Greyling, M, Louw JH and Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (*Solanum tuberosum* L.) germplasm. **Euphytica 113**: 135-144.
- Moisan-Theiry M, Marhadour S, Kerlan MC, Dessene N, Perramant M, Gokelaere T and Hingrat YL (2005) Potato cultivar identification using simple sequence repeats markers (SSR). **Potato Research 48**: 191-200.
- Morais RF, Quesada DM, Reis VM, Urquiaga S, Alves BJR and Boddey RM (2012) Contribution of biological nitrogen fixation to Elephant grass (*Pennisetum purpureum* Schum.). **Plant and Soil 356**: 23-24.
- Muktar MS, Habte E, Teshome A, Assefa Y, Negawo AT, Lee K-W, Zhang J and Jones CS (2021) Insights into the genetic architecture of complex traits in napier grass (*Cenchrus purpureus*) and QTL regions governing forage biomass yield, water use efficiency and feed quality traits. Frontiers in Plant Science 12: 678862.
- Orodho AB (2006) The role and importance of Napier grass in the smallholder dairy industry in Kenya. Food and Agriculture, Organization. Available at < http://www.fao.org/ag/AGP/AGPC/doc/ Newpub/napier/napier_kenya.htm>.
- Pereira AV, Auad AM, Lédo FJS and Barbosa S (2010) Pennisetum purpureum. In Fonseca DM and Martuscello JA (eds) Plantas forrageiras. Editora UFV, Viçosa, p. 197-219.
- Pereira AV, Morenz MJF, Lédo FJ and Ferreira RP (2016) Napier grass: Versatilities of uses in dairy cattle. In Vilela D, Ferreira RP, Fernandes

EM and Juntolli FV (eds) Pecuária de leite no Brasil. Embrapa, Brasília, p. 187-211.

- Pereira AV, Souza Sobrinho F, Souza FHD and Lédo FJS (2003) Trends in genetic improvement and production of forage seeds in Brazil. In 4th Simpósio sobre atualização em genética e melhoramento de plantas. UFLA, Lavras, p. 36-63.
- Rauscher G and Simko I (2013) Development of genomic SSR markers for fingerprinting lettuce (*Lactuca sativa* L.) cultivars and mapping genes. BMC Plant Biology 13: 1-11.
- Reid A and Kerr E (2007) A rapid simple sequence repeat (SSR)-based identification method for potato cultivars. **Plant Genetic Resources 5**: 7-13.
- Rengsirikul K, Ishii Y, Kangvansaichol K, Sripichitt P, Punsuvon V, Vaithanomsat P, Nakamanee G and Tudsri S (2013) Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of napiergrass (*Pennisetum purpureum* Shumach.) harvested 3-montly in Central Thailand. Journal of Sustainable Bioenergy Systems 3: 6.
- Rocha, JRASC, Machado JC, Carneiro PCS, Carneiro JCC, Resende MDV, Lédo FJS and Carneiro JES (2017) Bioenergetic potential and genetic diversity of elephantgrass via morpho-agronomic and biomass quality traits. Industrial Crops Products 95: 485-492.
- Rohlf FJ (2009) NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.21. Exeter Software Setauket, New York.
- Scarano D, Rao R, Masi P and Corrado G (2015) SSR fingerprint reveals mislabeling in commercial processed tomato products. Food Control 51: 397-401.
- Singh RB, Singh B and Singh RK (2019) Identification of elite Indian sugarcane varieties through DNA fingerprint using genic microsatellite markers. Vegetos 32: 547-555.
- Souza Sobrinho F, Pereira AV, Lédo FJS, Botrel MA, Oliveira JS and Xavier DF (2005) Agronomic evaluation of interspecific hybrids between Napier grass and millet. **Pesquisa Agropecuária Brasileira 40**: 873-880.
- Tsai M-H, Lee W-C, Kuan W-C, Sirisansaneeyakul S and Savarajara A (2018) Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production. Energy Science & Engineering 6: 683-692.
- Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M and Rozen SG (2012) Primer3 – new capabilities and interfaces. Nucleic Acids Research 40: e115.
- Yan Q, Wu F, Xu P, Sun Z, Li J, Gao L, Lu L, Chen D, Muktar M, Jones C, Yi X and Zhang J (2020) The elephant grass (*Cenchrus purpureus*) genome provides insights into anthocyanidin accumulation and fast growth. Molecular Ecology Resources 21: 526-542.
- Zhu YF, Qin GC, Jin H, Yang W, Wang JC and Zhu SJ (2012) Fingerprinting and variety identification of rice (*Oryza sativa* L.) based on simple sequence repeat markers. **Plant Omics 5**: 421-426.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.