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Abstract: Tomato Fusarium wilt caused by Fusarium oxysporum f.sp. lycopersici 
(Fol) constrains tomato production worldwide. Three hundred forty tomato 
accessions were evaluated for Fusarium wilt resistance and single nucleotide 
polymorphisms (SNPs) associated with resistance. The disease resistance evalu-
ation revealed that 15, 13, and 15 accessions were identified as Fusarium wilt 
resistant in Test 1, 2, and Mean data, respectively, with the disease severity index 
(DSI) ranging from 0-16.7%. A genome-wide association study (GWAS) identi-
fied SNPs associated with resistance. Eighteen common SNPs were detected in 
at least two tests and located on chromosomes 4, 6, 7, 9, and 12. Six unique 
significant SNPs were found in either Test 1 or 2, located on chromosomes 2, 4, 
and 7. Candidate genes associated with Fusarium wilt resistance were identi-
fied. Notably, two genes encoding leucine-rich repeat-like protein and disease-
resistance protein were predicted from the two unique SNPs, solDsnp10606 
and solDsnp6266, respectively.
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INTRODUCTION

Tomato (Solanum lycopersicum L.) is one of the most important vegetable 
crops grown worldwide. Tomato yield losses are caused by many factors, such 
as pests and diseases, including viruses, bacteria, fungi, and nematodes. (Bai 
and Lindhout 2007). The most significant pathogen causing tomato losses is 
Fusarium oxysporum f. sp. lycopersici (Fol). Fol can survive in soil as thick-walled 
chlamydospores for up to ten years and is difficult to eliminate (Jones et al. 
2014). Fol can be controlled via various methods, such as cultural practices and 
biological, chemical, and host resistance. The degree of success varies with each 
technique. However, resistant plants are the most effective and environmentally 
friendly strategy to control Fol.

The genetic control of resistance to Fol has previously been reported in 
tomatoes. To date, three resistant (R) genes have been identified, including I, 
I2, and I3, corresponding to the avirulence genes AVR1, AVR2, and AVR3 in Fol 
(Inami et al. 2012). One resistance gene, I (Immunity), was identified in Solanum 
pimpinellifolium, which contained a single and dominant resistance locus. The 
new resistant cultivar containing the I gene was released as the first cultivar 
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with Fol resistance (Paddock 1950). The I (Solyc11g011180) gene was identified on chromosome 11, which encodes an 
atypical membrane-anchored leucine-rich repeat (LRR) receptor-like protein (RLP) (Catanzariti et al. 2017). Similarly, 
Simons et al. (1998) identified the I2 gene Solyc11g071430, which is also on chromosome 11. This gene encodes a 
coiled-coil (CC) nucleotide-binding (NB) LRR protein. There was a report that identified a resistance locus from the S. 
pennellii accession LA716, designated I3, and the I3 (Solyc07g055640) gene was mapped to chromosome 7 and encodes 
an S-receptor like-kinase (SRLK) (Catanzariti et al. 2015). Presently, molecular breeding programs generally use molecular 
markers to assist in selecting desirable traits. The application of genetic markers has changed plant breeding, especially 
for disease resistance. The programs help breeders reduce the cost of disease screening and utilize specific markers to 
track the existence of resistance genes in their breeding populations.

With the advancement of sequencing technologies and the availability of tomato genome sequences, DNA sequence 
variations such as single nucleotide polymorphisms (SNPs) have been used to develop markers for tomato breeding and 
genetic improvement, including discovering resistance genes (Gonzalez-Cendales et al. 2014). The SNP markers in I, I2, 
and I3 were discovered to facilitate breeding selection and involved Fusarium wilt-resistant mechanisms (Chitwood-
Brown et al. 2021). Recently, DArTseq (Diversity Array Technology) is a technique developed to reduce the complexity 
of the genome based on specific restriction enzymes that separate low-copy sequences in genomes, which are highly 
related to active genes (Baloch et al. 2017). The technique deployed next-generation sequencing (NGS) to facilitate SNP 
discovery, marker genotyping, genome-wide characterization, and population structure of germplasms (Allan et al. 2020).

Genome-wide association (GWA), part of association mapping or linkage disequilibrium (LD) mapping, relies on 
detecting the association between genotype and phenotype of unrelated natural populations with LD patterns and no 
requirement for segregated populations (Rafalski 2010, Sauvage et al. 2014). This powerful approach allows the detection 
of genes/quantitative trait loci (QTLs) controlling complex traits, and tightly linked markers can be developed for marker-
assisted selection (MAS). However, successful GWA for Fusarium wilt resistance has been reported in many crop plants, 
such as cowpea (Dong et al. 2022), castor bean (Shaw et al. 2022), sweet basil (Gonda et al. 2022), strawberry (Pincot 
et al. 2018), cape gooseberry (Osorio-Guarín et al. 2016), cotton (Mei et al. 2014), pigeon pea (Patil et al. 2017), and 
bottle gourd (Li et al. 2021), but not in tomatoes. Therefore, this study aims to identify SNP markers linked to Fusarium 
wilt resistance in the natural germplasm of tomatoes using the genome-wide association approach.

MATERIAL AND METHODS

Plant materials and growth conditions
Tomato germplasm (340 accessions) was derived from the Tropical Vegetable Research Center, Department of 

Horticulture, Kasetsart University, Kamphaeng Saen Campus, Thailand. Seeds of the tomato population and Seedathip 3 
(SDT3) variety (Fusarium wilt susceptible check) were sown directly into 50-cell plug trays filled with a ready-to-use mixture 
of the substrate (Kekkilä Professional, Vantaa, Finland). The germinated seedlings were grown in the greenhouse with 
natural sunlight and a temperature of 30-33 °C/25-28 °C (day/night). Seedlings were watered once a day until 20 days.

Fusarium wilt resistance evaluation
Fol isolate TFPK401 (race 1) was cultured on potato dextrose agar (PDA) medium for 14 days, and then spores 

were collected. The collected spores were counted using a hemocytometer under a 400x light microscope. The spore 
suspension was adjusted to 1x106 spores mL-1. Fol inoculation was performed by the root-dip method (Marlatt et al. 
1996). The roots of 20-day-old tomato plants were washed with clean water, and the root tips were then cut off 1 cm 
long. Seedlings with cut roots were immersed in a prepared Fol spore suspension or autoclaved distilled water (control 
plants) for 20 min. All inoculated plants were transplanted into a 3-inch x 6-inch plastic bag filled with sterilized soil and 
watered before transplanting. Seedathip 3 (SDT3) was used as a susceptible control. The experiment was set up in a 
completely randomized design (CRD) with two independent tests (Tests 1 and 2). Each test had three replicates comprising 
one plant for each genotype/plastic bag. Screening for Fusarium wilt resistance was carried out in a greenhouse with 
natural sunlight. The disease symptoms were observed when STD3 showed wilting on a scale of 5.

The observation based on a rating scale, including the disease severity score (DSS) and disease severity index (DSI), 
was adopted from Marlatt et al. (1996) with some modifications. The DSS was scored using a five-grade severity scale, 
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with (1) denoting symptomless, (2) chlorotic plants, (3) chlorotic plants and wilting, (4) wilting plants, and (5) plant death. 
DSI was calculated using the formula: DSI = [(∑Si × Ni) ⁄ (S × Nt)] × 100, where Si is the disease severity score, Ni is the 
number of tested tomatoes with Si severity score, S is the highest disease severity score, and Nt is the total number of 
tested tomatoes. Tested tomatoes were assigned for their Fusarium wilt resistance type based on the percentage of DSI 
described by Akram et al. (2014) with slight modifications as follows: 0-20% DSI = resistant (R), 21-40% DSI = moderately 
resistant (MR), 41-60% DSI = moderately susceptible (MS), and 61-100% DSI = susceptible (S). Two independent tests 
with three replications were performed for each tomato accession, both mock and Fol inoculation. 

Genomic DNA extraction, DArTseq analysis, and SNP calling
The DNA of 340 tomato accessions was extracted according to the procedure reported by Mace et al. (2003). The 

quantification and purity of extracted DNA samples were evaluated using a NanoDropTM (Thermo Scientific, Waltham, 
MA, USA) spectrophotometer. For quality control (QC) of isolated DNA before sending it to DArTseq analysis, the DNA 
samples were digested with EcoRI and compared to the nondigested samples. The high-quality DNA was diluted to an 
equal concentration of 100 ng μL-1 with distilled water. The tomato DNA was digested with two restriction enzymes, PstI 
and MseI. The fragments of digested DNA were sequenced using an Illumina Genome Analyzer IIx (Illumina Inc., San 
Diego, CA, USA). The DNA sequence quality was assessed by filtering with a FASTQ confidence threshold of 90%. The 
filtered DNA sequences were aligned against the tomato genome sequence reference. DArTseq analysis was performed at 
Diversity Arrays Technology Pty. Ltd. (Australia) (www.diversityarrays.com). The SNP markers derived from DArTSeq were 
filtered with a maximum reproducibility threshold of 95%, an 80% call rate for markers, and a 20% missing value over 
samples. SNPs with minor allele frequencies (MAFs) less than 0.05 and heterozygosity greater than 0.10 were removed.

Tomato germplasm diversity analysis
Genetic diversity was analyzed by a simple matching coefficient method (Kethom et al. 2019) using filtered SNPs 

with a call rate greater than 90% and polymorphic informative content (PIC) higher than 0.1. A dendrogram was 
generated by DARwin software version 6.0.13 based on the dissimilarity index (DI) using unweighted neighbor-joining 
with 1000-repeat bootstrap analysis.

Association analysis for resistance to Fusarium wilt and candidate gene identification
The association between phenotyping (DSI values derived from Tests 1 and 2 and the mean across two tests) and SNP 

genotyping was performed using the mixed linear model. The analyses were run in Genomic Association and Prediction 
Integration Tool (GAPIT) on RStudio (Lipka et al. 2012). To adjust the population structure, the filtered SNPs were used 
to calculate kinship among tomato accessions and principal component analysis (PCA). The significance level of the 
genome-wide threshold was calculated based on 1/total number of SNPs (Ma et al. 2016). The significantly associated 
SNP marker-trait was searched for gene function using BlastN analyses against the tomato genome chromosome (built 
SL2.5) (https://solgenomics.net/tools/blast/).

RESULTS AND DISCUSSION

Fusarium wilt resistance evaluation
 Fusarium wilt resistance was evaluated in 340 tomato accessions. The tomato germplasm showed an average 

disease severity score (DSS) and disease severity index (DSI) ranging from 1.00-5.00 and 0-100%, respectively. Disease-
resistance types were identified into four groups according to DSI values, including resistant (R), moderately resistant 
(MR), moderately susceptible (MS), and susceptible (S). The tomato accessions were categorized into four disease-
resistance types. The susceptibility (DSI ranged from 62.5 to 100%) comprised 254 (74.7%), 254 (74.7%), and 257 (75.6%) 
accessions, whereas the tomato MS accessions within 41.7 to 58.3% DSI were 43 (12.6%), 44 (12.9%), and 41 (12.1%) 
in Test 1, 2, and mean, respectively. There were 28 (8.2%), 29 (8.5%), and 27 (7.9%) accessions showing MR (DSI ranged 
from 25.0 to 33.3%) in Tests 1 and 2 and the mean, respectively. The resistant tomatoes (DSI ranged from 0 to 16.7%), 
comprising 15 (4.4%), 13 (3.8%), and 15 (4.4%) accessions, were found in Test 1, 2, and mean, respectively (Figure 1). 
For the R group, nine common resistant tomato accessions were found in all tests, including LE002, LE184, LE217, LE258, 
LE297, LE306, LE472, LE482, and LE501. Those accessions showed no symptoms and the lowest DSS (1) and DSI (0%). 
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Disease severity symptoms of some accessions are shown in Figure 2. These results suggest that the resistant tomatoes 
may involve their resistant (R) gene, which is responsible for detecting and recognizing avirulence (AVR) protein from 
Fol, resulting in a defense mechanism against the pathogen. The interaction between the response of the R gene and 
the avirulence gene is based on the gene-for-gene theory (Inami et al. 2012).

Figure 1. The disease resistance types of 340 tomato accessions identified by the disease severity index (DSI) values in Tests 1 and 2 
and the mean of the two tests. R: resistant (0-20% DSI), MR: moderately resistant (21-40% DSI), MS: moderately susceptible (41-60% 
DSI), and S: susceptible (61-100% DSI).

Figure 2. External and internal symptoms of Fusarium wilt susceptible (SDT3) and resistant (LE472, LE482, and LE501). H2O: mock 
inoculation with water, Fol: tomato inoculated with Fol.
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SNP genotyping and genetic diversity of tomato 
germplasm

A total of 19,843 SNPs were initially obtained from 
the DArTseq analysis. After filtering with the criteria of 
PIC ≥ 0.1 and call rate ≥80%, 4,478 SNPs were selected 
for further genetic diversity and GWAS of Fusarium wilt 
response. Cluster analysis generated a dendrogram based 
on the dissimilarity index (DI). Three hundred forty tomato 
accessions were divided into two groups, comprising 52 
and 288 accessions for Groups I and II, respectively, with 
DI values ranging from 0.00115-0.39 (Figure 3). Almost all 
Fusarium wilt-resistant accessions were in group II: LE184, 
LE217, LE238, LE258, LE297, LE306, LE314, LE373, LE472, 
LE482, LE489, LE497, LE501, and LE513, except LE002, 
were in Group I. Genetic diversity based on SNPs showed 
only two groups, suggesting a narrow genetic background 
and sharing some alleles within each tomato accession. A 
previous report indicated that tomato landraces might have 
lower allelic richness, a higher number of rare alleles, and a 
lower number of private alleles than bred cultivars (Corrado 
et al. 2013). However, the close phylogenetic relatedness of 
germplasm makes it useful in tomato breeding rather than 
other more phylogenetically distant species (Mata-Nicolás 
et al. 2020). SNP genotyping is a powerful tool used to study 
the population structure of plant germplasm. Most studies 
have been conducted on the genetic diversity and population 
structure of two different species of tomatoes using SNP 
markers (Pailles et al. 2017). Wang et al. (2016) used SNPs 
to study genetic diversity and population structure in a 
tomato germplasm collection. SNP genotyping demonstrated 
the pattern of selection and linkage to the trait of interest 
in contemporary (processing and fresh-market) varieties, 
vintage varieties, and landraces (Sim et al. 2011).

Association analysis for Fusarium wilt resistance
Association analysis was performed between DSI and SNP genotyping using the mixed linear model (MLM) to 

identify the SNP markers linked to the traits. The Manhattan plots and Q-Q plots are shown in Figure 4. According to the 
Manhattan plots, 24 SNPs (with a Logarithm of Significant Level [-log10(P)] ≥ 3.0) were significantly associated with DSI 
in at least one independent test, including 8, 9, and 7 SNPs detected from Test 1, 2, and the mean, respectively. Of the 
24 significant SNPs, 18 common SNPs were detected in at least two tests and located on chromosomes 4, 6, 7, 9, and 
12 with [-log10(P)] = 3.00-4.06. Six unique significant SNPs, which were located on chromosomes 2, 4, and 7 ([-log10(P)] = 
3.04-3.54) (Figure 4, Table 1), were found in either Test 1 or 2. The results indicate that multiple genes control fusarium 
wilt resistance in tomatoes. All 24 SNPs were searched for gene function using BlastN analyses against the tomato 
genome chromosome (built SL2.5) (https://solgenomics.net/tools/blast/). 

The candidate genes associated with disease response to Fol infection were identified, including solute carrier 
family 35 member C2 (Solyc12g010990), zinc finger family protein (Solyc06g016770), pistil extensin-like protein 
(Solyc02g078050), CUE domain-containing protein expressed (Solyc09g064860), peptidyl-prolyl cis-trans isomerase-
like protein (Solyc07g066420), leucine-rich repeat-like protein (Solyc07g007400), WW domain-binding protein 2 
(Solyc04g009190), nuclear pore complex protein Nup93-like protein (Solyc04g016240), BZIP transcription factor family 

Figure 3. Dendrogram of cluster analysis with UPGMA (un-
weighted pair group method with arithmetic mean) drawn by 
DARwin 6 program. The Roman letters indicate each group (I and 
II). Branches highlighted in red indicate tomato accessions in the 
Fusarium wilt resistance group (R).



6 Crop Breeding and Applied Biotechnology - 23(1): e43532311, 2023

P Kawicha et al.

protein (Solyc04g071160), disease resistance protein (Solyc04g009120), and pentatricopeptide repeat-containing protein 
At4g21190 (Solyc04g056370) (Table 1).

A genome-wide association study is a powerful approach that allows the detection of genes/quantitative trait loci 
(QTLs) controlling complex traits, and tightly linked markers can be developed for marker-assisted selection (MAS). We 
successfully identified SNPs associated with Fusarium wilt resistance (DSI). GWA for Fusarium wilt resistance has been 
reported in many crop plants. Dong et al. (2022) also identified 3 and 7 SNPs significantly associated with LFD and VD 
in response to Fusarium wilt in cowpea, respectively, on chromosomes 3, 4, 5, 6, and 9. Thirty candidate genes were 
identified, including leucine-rich repeat protein kinase family proteins, protein kinase superfamily proteins, and zinc finger 
family proteins. Gonda et al. (2022) found a cluster of putative disease-resistance genes that encodes a transmembrane 
leucine-rich repeat-receptor-like kinase-ubiquitin-like protease (LRR-RLK-ULP) associated with resistance to Fusarium 
oxysporum f. sp. basilici. In this study, the zinc finger family protein (Solyc06g016770) was associated with Fol infection. 

A previous report showed that zinc finger proteins were involved in a diverse range of plant growth and development 
processes, as well as regulating resistance mechanisms to biotic and abiotic stresses. These proteins have a DNA binding 
domain in the nucleotide binding site-leucine rich repeat (NBS-LRR) class of resistance (R) proteins, which determines the 
regulatory function of this protein under stress conditions (Feurtado et al. 2011). Interestingly, disease resistance protein 
(Solyc04g009120) and leucine-rich repeat-like protein (Solyc07g007400) were associated with DSI. This Solyc04g009120 
gene was classified as an R-gene family NB-ARC domain-containing disease resistance protein. Most R proteins contain 
a central NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain, consisting of three 
subdomains, including NB, ARC1, and ARC2. A previous study showed that the role of the NB-ARC domain in the tomato 

Figure 4. Manhattan plots (A-C) and Q-Q plots (D-F) show the location of SNP markers that were significantly associated (-log10(P) 
≥3) with the disease severity index (DSI) in Tests 1 and 2 and the mean across the tests. The blue horizontal dashed line indicates the 
genome-wide significance threshold (-log10P ≥ 3).
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I2 gene could trigger defense signaling (Tameling et al. 2006). In addition, a candidate gene, peptidyl-prolyl cis-trans 
isomerase-like protein (Solyc07g066420), was identified and located close to the I3 gene (Solyc07g055640), a resistance 
gene for Fol (tomato genomic resources database; http://223.31.159.9/tomato2/index.html). Peptidyl-prolyl cis-trans 
isomerase (PPIase) is involved in the folding of target proteins. The essential functions involved cellular processes and 
pathogen interactions (Romano et al. 2004). PPIase, ROC1 cyclophilin, AtCyP19, and AtCyP57 from Arabidopsis thaliana 
are involved in the response to Pseudomonas syringae infection (Olejnik et al. 2021).
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Table 1. Significant SNPs (-log10(P) ≥3) and candidate genes associated with Fusarium wilt resistance in tomato genotypes with two 
different tests and the mean across the tests

Test SNP Chr. Position Allele 
change LOD MAF R2 (%) BlastN search against tomato genome (SL2.50)

1

solDsnp17559 12 3851464 C>G 4.06 0.05 0.11 Solyc12g010990: Solute carrier family 35 member C2
solDsnp9082 6 9849869 T>C 3.78 0.08 1.57E-09 Solyc06g016770: Zinc finger family protein
solDsnp9473 6 28178233 C>G 3.36 0.12 0.00 N/A
solDsnp3197 2 37439422 C>T 3.27 0.13 0.00 Solyc02g078050: pistil extensin-like protein

solDsnp14242 9 57947829 T>C 3.16 0.38 3.33E-09 Solyc09g064860: CUE domain-containing protein expressed
solDsnp11863 7 65079504 G>C 3.15 0.43 0.14 Solyc07g066420: Peptidyl-prolyl cis-trans isomerase-like protein
solDsnp9471 6 28178237 C>A 3.14 0.09 0.00 N/A

solDsnp10606 7 2131314 C>T 3.04 0.14 0.00 Solyc07g007400: Leucine-rich repeat-like protein

2

solDsnp6271 4 2694174 T>A 3.60 0.07 0.20 Solyc04g009190: WW domain-binding protein 2
solDsnp6493 4 7041224 G>A 3.54 0.07 4.90E-07 Solyc04g016240: Nuclear pore complex protein Nup93-like protein
solDsnp7106 4 55672896 T>C 3.44 0.06 0.15 Solyc04g071160: BZIP transcription factor family protein
solDsnp6266 4 2644352 A>G 3.28 0.06 0.00 Solyc04g009120: Disease resistance protein
solDsnp9473 6 28178233 C>G 3.21 0.13 4.98E-08 N/A
solDsnp9082 6 9849869 T>C 3.12 0.09 0.01 Solyc06g016770: Zinc finger family protein

solDsnp11863 7 65079504 G>C 3.11 0.43 0.24 Solyc07g066420: Peptidyl-prolyl cis-trans isomerase-like protein
solDsnp6997 4 53301687 G>A 3.07 0.09 0.05 Solyc04g056370: Pentatricopeptide repeat-containing protein At4g21190

solDsnp17559 12 3851464 C>G 3.00 0.05 0.14 Solyc12g010990: Solute carrier family 35 member C2

Mean

solDsnp17559 12 3851464 C>G 3.58 0.05 0.20 Solyc12g010990: Solute carrier family 35 member C2
solDsnp9082 6 9849869 T>C 3.50 0.09 7.93E-09 Solyc06g016770: Zinc finger family protein
solDsnp9473 6 28178233 C>G 3.34 0.13 4.82E-09 N/A

solDsnp11863 7 65079504 G>C 3.19 0.43 0.21 Solyc07g066420: Peptidyl-prolyl cis-trans isomerase-like protein
solDsnp6271 4 2694174 T>A 3.11 0.07 0.18 Solyc04g009190: WW domain-binding protein 2

solDsnp14242 9 57947829 T>C 3.08 0.38 0.01 Solyc09g064860: CUE domain-containing protein expressed
solDsnp9471 6 28178237 C>A 3.04 0.09 0.00 N/A

Chr.: Tomato chromosome, LOD: logarithm of odds, MAF: minor allele frequency
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