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Abstract: This study aimed to apply, in unprecedented depth, a Bayesian ap-
proach to the non-linear regression model developed by Toler for evaluating 
the stability and adaptability of genotypes. Twenty-five soybean cultivars were 
evaluated in twenty-one plots across the midwestern of Brazil. A complete block 
design was employed, with three replications. The evaluated variable was grain 
yield. The proposed methodology was implemented in the R program by means 
of the BRugs package. The methodology was capable of differentiating the ef-
fect of the environment on soybean cultivars in terms of yield in the different 
environments, allowing exploration of the response of each genotype to environ-
mental variations. Cultivars 6266RSF, NS6990, GD19I435, GD19I439, GD19C443, 
RC0496 and IA18661 presented good stability and general adaptability, being 
the most recommended for future evaluations. The other cultivars presented 
specific adaptability and high responsiveness to unfavorable environments. 
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INTRODUCTION

Plant breeding programs aim to obtain genotypes that are high-yielding, 
stable and adaptable to a wide range of cultivation environments. Identifying 
widely adaptable genotypes may be difficult due to genotype–environment 
interaction (G × E), defined as the differential response of genotypes to 
environmental variation. In addition, this interaction may inflate estimates of 
genetic variance, resulting in an overestimation of the expected genetic gains 
(Cochran 1954, Duarte and Vencovsky 1999).

Inconsistent genotype performance in different environments is one of the 
main challenges faced by breeders. The occurrence of the G × E interaction 
can be statistically detected by joint variance analysis using repeated trials 
in more than one environment. However, it is recommended to carry out a 
thorough study of genotype stability and adaptability in order to evaluate the 
G × E interaction effect in detail (Cochran 1954, Duarte and Vencovsky 1999).

Several methods for evaluating the G × E interaction have been developed 
over the years, involving simple linear regression models (Finlay and Wilkinson 
1963, Eberhart and Russell 1966), segmented regression (Verma et al. 1978, 
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Cruz et al. 1989), and non-parametric analysis (Lin and Binns 1988, Nascimento et al. 2010), as well as multivariate 
analysis methods such as GGE Biplot (Oliveira et al. 2016), additive main effects and multiplicative interaction (AMMI) 
(Gauch 2006, Bernardo Júnior et al. 2018, Rosa et al. 2022), extended centroid and, recently, Bayesian models (Couto 
et al. 2015, Nascimento et al. 2020, Oliveira et al. 2020).

With the same goal of better describing genotypic response to the environment, Toler and Burrows (1998) presented 
a non-linear regression model that allows joint estimation of parameters reflecting adaptation and stability (β1i, β2i, R2) 
and the environmental index (µj). This model improves on methods that employ simple linear regression, as it allows 
classification of genotypes into different groups according to their response patterns. However, as it is based on frequentist 
principles, this model also has limitations, as responses are only in one dimension and hard to interpret when there is 
no linearity (Hamawaki et al. 2015, Jarquín et al. 2017). Bi-segmented multiple regression models, as described by Cruz 
et al. (1989), allow the performance of each genotype to be represented by a single curve constituted by two straight 
segments. However, such models also have limitations regarding the estimation of the parameters and the precision 
of estimates.

Unlike frequentist methods, the Bayesian approach naturally allows the incorporation of additional information 
into the model via the a priori probability distribution (Couto et al. 2015, Nascimento et al. 2020), which expresses 
one’s assumptions about previously observed data before certain evidence is taken into consideration. Based on these 
premises and seeking to fill a gap in the world literature, this study aimed to, in unprecedented depth, apply the Bayesian 
approach to the Toler method in order to evaluate the stability and adaptability of soybean genotypes.

MATERIAL AND METHODS

The trials were carried out during the 2019/2020 crop season in 21 plots in various areas of midwestern Brazil 
(Goiás, Mato Grosso, and Maranhão states) (Table 1). Twenty-five soybean cultivars were evaluated: 6266RSF, 68I68RSF, 
NEO680, 68I69RSF, NS6990, GD19I435, GD19I439, GD19I434, GD19I438, GD19C443, RC0495, RC0496, RC6842, RC7904, 
RC0348, RC0349, SBC200381, RC5278, RC0377, CI8591, I10883, I17087, SBI200135, IA18617 and IA18661. A complete 
block design was employed with three replications. The experimental unit was represented by four rows 5.0 m long and 

Table 1. Geographic characteristics of the 21 environments evaluated in the Midwest region of Brazil

Environment Locations Altitude (m) Latitude   Longitude Annual rainfall (mm)
1 Araguari 1013 -18.651 -48.1854 1566 
2 Bom Jesus 1054 -9.075 -44.3573 985 
3 Jatai 1 749 -17.8193 -51.1167 1541 
4 Jatai 2 749 -17.8193 -51.1167 1541 
5 Luziânia 930 -16.5246 -48.3016 1575 
6 Mineiros 760 -17.6196 -52.1788 1675 
7 Montividiu1 797 -17.1960 -50.6496 1500
8 Montividiu 2 797 -17.3839 -51.4535 1500 
9 Morrinhos 771 -17.6198 -49.0938 1535 
10 Nova Ponte 937 -19.1203 -47.8049 1149 
11 Paraúna 1 790 -17.4888 -50.8912 1495 
12 Paraúna 2 830 -17.4888 -50.8912 1495 
13 Planalto Verde 1188 -17.3841 -51.4542 1468 
14 Rio Verde 1 748 -17.7492 -50.7313 1663 
15 Rio Verde 2 748 -17.6897 -50.8305 1663 
16 Rio Verde 3 748 -17.7492 -50.7313 1663 
17 Santa Helena 570 -17.8439 -50.6620 1454 
18 São Miguel 679 -17.8439 -50.6620 1196 
19 Serranópolis 696 -16.9361 -48.6965 1478 
20 Turvelândia 470 -17.7264 -50.3460 1414
21 Uberlândia 887 -19.1559 -47.9777 1479 
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spaced 0.45 m apart. The useful parcel area for grain yield evaluation was 4.0 m2; the two central rows were evaluated, 
discarding 0.25 m at each end. Culture was carried out according to recommendations for soybean cultivation in this 
region (Seixas et al. 2020).

The grain yield data for each trial were subjected to standard individual variance analyses. Next, joint variance 
analysis was performed, for which the presence of heterogeneity between residual variances was evaluated using the 
Hartley test. When heterogeneity was detected, the degrees of freedom of the average error and interaction were 
adjusted according to the method described by Cochran (1954). The significance of the F test was interpreted only after 
these adjustments. In the presence of significant G × E interaction, analyses of stability and adaptability were carried 
out using the method described by Toler and Burrows (1998) via the Bayesian approach proposed by Nascimento et 
al. (2020), such that:

Yij = αi + [Zjβ1i + (1 − Zj)β2i] μj + eij                            [1]

where:

Yij is the average response of genotype i in environment j (i = 1, 2, …, 25; j = 1, 2, …, 21);

αi reflects the response of genotype i in the environment of average yield (μj = 0);

β1i and β2i reflect the sensitivity of the response of genotype i in environments with yields lower (μj < 0) and higher 
(μj > 0) than average, respectively;

μj reflects environmental quality, that is, the effect of environment j;

eij is the average experimental error;

Zj is a dummy indicator variable, with Zj = 1 when μj < 0 and Zj = 0 when μj > 0.

The environmental quality parameter μj for this analysis was interpreted in the same way as the environmental index 
(Ij) of Eberhart and Russell (1966). The analysis was conducted according to the Bayesian approach adapted by Couto et 
al. (2015) and Nascimento et al. (2020). It must be pointed out that in linear regression models, environmental quality 
(the independent variable, Ij) is estimated separately before estimating the regression coefficients (b), whereas in Toler 
and Burrows (1998), μj is estimated simultaneously with the other regression parameters (favorable environment, μj > 0; 
unfavorable environment, μj < 0); the difference is that the use of μj (j = 1, 2, 3, …, 21) allows different genotype response 
patterns to be distinguished, even with a narrow genetic base, in addition to distinguishing the non-linear regression 
model from the linear one and facilitating hypothesis testing for the parameters being evaluated.

Equation (1), which describes the behaviour of a given genotype, can be reduced to Yij = αi + βiμj + eij, when β1i = β2i = βcommon. 
To determine whether this equation could be represented by a mono-segmented model (single straight regression line) 
or required a bi-segmented model, hypothesis testing was performed, with the null hypothesis H0 being that β1i = β2i. 
Bi-segmented models can produce a convex, linear or concave response pattern (Figure 1). Toler and Burrows (1998) 
describes five categories of genotype response patterns based on hypothesis testing, as follows:

A: H0 (β1 = β2) is rejected and β1 < 1 < β2 is accepted. 

B: H0 (β1 = β2) is not rejected and H0 (β = 1) is rejected with βcommon>1.

Figure 1. Graphic example of a doubly desirable (A), doubly undesirable (B) and average (C) response in the Toler model.



4 Crop Breeding and Applied Biotechnology - 23(1): e440523111, 2023

JC Rosa et al.

C: H0 (β1 = β2) is not rejected and H0 (βcommon = 1) is not rejected.

D: H0 (β1 = β2) is not rejected and H0 (β = 1) is rejected, with βcommon < 1.

E: H0 (β1 = β2) is rejected and β1 > 1 > β2 is accepted.

In practical terms, A represents a ‘doubly desirable’ response (good performance in both favorable and unfavorable 
environments) with a convex response pattern; B represents a desirable response only in favorable environments, 
with a simple linear pattern; C represents a simple linear pattern with no deviation from the average response, D 
represents a desirable response only in unfavorable environments, with a simple linear pattern; and E represents a 
doubly undesirable response with a concave pattern. In other words, a convex or doubly desirable response pattern 
is observed when the genotype has low responsiveness to unfavorable environments (μj < 0) and starts to respond 
satisfactorily when conditions become favorable (μj > 0), whereas a concave or doubly undesirable response pattern 
is observed when the genotype is highly responsive to unfavorable environments and only slightly responsive to more 
favorable environments. For each stability analysis, the genetic cultivars were assigned to groups A to E according 
to the criteria described above.

For the Bayesian analysis, non-informative a priori distributions were assumed for parameters β0, β1, β2 and σ2
di (stability), 

following Nascimento et al. (2020). For the parameter βcommon, the model adopted by Couto et al. (2015) was followed. 
The proposed methodology was implemented in the R program (R Development Core Team 2022), and samples of the 
independent a posteriori conditional distribution were obtained using the BRugs function in OpenBUGS (an open-source 
Bayesian analysis program), which binds OpenBUGS to R by means of MCMC (Markov Chain Monte Carlo) procedures, 
considering 550,000 interactions via the Gibbs sampler. A burn-in (initial burning) of 50,000 iterations was adopted, 
as well as a skip of 10 iterations to eliminate potential self-correlations. The convergence of the chains was verified by 
means of Gebeke (1992)’s and Raftery and Lewis’s diagnostics using the coda package in R (Plummer et al. 2006).

To estimate the genetic parameters, their means and standard deviations were obtained a posteriori. These parameters 
were considered significant if their respective 95% credibility intervals did not contain a value of zero; that is, if the lower 
and upper limits of β1 and β2 exhibited a transition in value between positive and negative when β1 = β2 was rejected, 
or if βcommon was greater than 1 when β1 = β2 was not rejected.

RESULTS AND DISCUSSION

There were significant differences among genotypes, environments and G × E interactions (Table 2). Due to these 
differences in environmental influence, it was difficult to recommend cultivars suitable for the whole region of study, 
and a thorough analysis of interaction effects was necessary (Duarte and Vencovsky 1999, Morais et al. 2008). The 
coefficient of variation (CV) for grain yield (kg ha-1) was 14.20 (Table 2), indicating experimental control, and thus, it 
is suitable according to those reported in the literature (Morais et al. 2008, Hamawaki et al. 2015, Matei et al. 2017, 
Nascimento et al. 2020).

The Bom Jesus, Luziânia, Mineiros, Montividiu 2, Morrinhos, Nova Ponte, Planalto Verde, and Turvelândia plots had 
the the most negative environmental index estimates and 
the lowest yields compared to the general average for each 
genotype, with the environment in Morrinhos being the 
most unfavorable with the lowest yield (2061.20 kg ha-1), 
making it the least recommended area for the evaluated 
cultivars (Table 3). In the Araguari, Jataí 1, Jataí 2, Montividiu 
1, Paranaú 1, Paranaú 2, Rio Verde 1, Rio Verde 2, Rio Verde 
3, Santa Helena, São Miguel, Serranópolis, and Uberlândia 
plots, the environmental index estimates were positive and 
yields were high compared to the genotype averages, with 
São Miguel being the best with a yield of 5262.21 kg ha-1. 
Thus, the difference between the plots with the highest 
and lowest yields was 3201.20 kg ha-1 (Table 3), indicating 

Table 2. Joint analysis of variance of soya yield (kg ha-1) of 25 
soybean cultivars evaluated in 21 environments in the Midwest 
region of Brazil

Source of variation df Mean of square p-valor
Blocks/Environment 42 492364.5245
Genotypes 24 3141329.5734 0.0000
Environment 20 42590326.099 0.0000
Genotypes x Environment 480 573604.9949 0.0268
Error 1008 328888.1694
Total 1574   
Overall Average (kg ha-1) 4038.1435
CV (%) 14.2018  
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a high discrepancy in environmental favorability among the plots, which reaffirms the need for more thorough studies 
of the G × E interaction (Duarte and Vencovsky 1999, Ferreira et al. 2006, Morais et al. 2008).

Convergence in all generated chains was verified. Parameters of adaptability and stability were estimated and are 
presented in Table 4. Most of the evaluated genotypes presented differential responses before the environments were 
classified as favorable and unfavorable (β1 ≠ β2), except for cultivars 6266RSF, NS6990, GD19I435, GD19I439, GD19C443, 
RC0496, and IA18661, as H0 (β1 = β2) was not rejected in their case.

None of the genotypes in the present study could be classified in Toler’s group A, as they were not highly responsive 
to favorable environments. Genotypes can be classified in group A if they are highly responsive to favorable environments 
but do not lose their potential in unfavorable environments; these can be considered the ideal genotypes in terms of 
adaptability. In general, these genotypes are demanding and require high environmental quality to express their full 
genetic production potential (Toler and Burrows 1998). Rosse and Vencovsky (2000) clarified that, in order to reach 
this potential, it is necessary to use advanced technologies to ensure good conditions (good fertilization, high hybrid 
availability, adequate handling and a favorable environment) because, under adverse conditions with μj < 0, such genotypes 
produce relatively low yields. Genotypes such as these would not be the most recommended for environments where 
few technological resources are available. 

Likewise, none of the genotypes in this study could be classified in groups B and D, as their response was not stable 
in different environments. Genotypes classified in group B present a linear response pattern before environmental 
favorability is determined, but their βcommon value is above 1.0, indicating greater inclination of the line towards 
favorable environments. Such genotypes can be considered more stable in environmental response, as they tend to 
exhibit phenotypic plasticity, that is, a degree of change in individual traits in different environments (Bradshaw 1965). 
Genotypes classified in group D also present a linear response before environmental favorability is determined, but 
βcommon is lower than 1.0, indicating greater inclination of the line towards unfavorable environments. It is important to 
point out that because the environmental favorability index (μj) highlights the divergences and contrasts among test 
locations, test locations as distinct as possible should be selected in order to maximize data regarding the adaptability 

Table 3. Average results for grain yield (kg ha-1) in soybeans and environmental quality indexes (μj) estimated by the Toler (1990)’s 
method, in cultivar competition tests, in 21 environments in the Midwest region of Brazil

Environment Averages (kg ha-1) Environmental Index (μj) Classification
Araguari 4841.3760 803.2405 Favorable
Bom Jesus 3107.8763 -930.2592 Unfavorable
Jatai 1 4343.2800 305.1445 Favorable
Jatai 2 4250.3467 212.2112 Favorable
Luziânia 3480.5359 -557.5996 Unfavorable
Mineiros 2789.4000 -1248.7355 Unfavorable
Montividiu1 4202.0133 163.8779 Favorable
Montividiu 2 3848.3733 -189.7621 Unfavorable
Morrinhos 2061.2000 -1976.9355 Unfavorable
Nova Ponte 4031.1916 -6.9439 Unfavorable
Paraúna 1 4066.8533 28.7179 Favorable
Paraúna 2 4389.9867 351.8512 Favorable
Planalto Verde 3888.0000 -150.1355 Unfavorable
Rio Verde 1 4089.7067 51.5712 Favorable
Rio Verde 2 4893.8133 855.6779 Favorable
Rio Verde 3 5014.0091 975.8736 Favorable
Santa Helena 4254.8800 216.7445 Favorable
São Miguel 5262.2192 1224.0837 Favorable
Serranópolis 4425.5467 387.4112 Favorable
Turvelândia 3460.4933 -577.6421 Unfavorable
Uberlândia 4099.7435 61.6080 Favorable
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Table 4. Estimates for the mean a posteriori and credibility intervals (95% LB-UP) for the stability and adaptability parameters

Genotypes     LB     β0      UP     LB         β1       UP       LB         β2 UP

6266RSF 3660.76 3801.32 3940.41 0.59 0.79 1.00 -0.25 0.25 0.76
68I68RSF 3639.32 3825.19 4009.10 0.71 0.99 1.26 -1.05 -0.37 0.29
NEO680 4285.58 4440.99 4594.77 0.74 0.97 1.20 -0.68 -0.12 0.43
68I69RSF 4171.68 4318.36 4463.51 1.03 1.25 1.47 -0.55 -0.01 0.51
NS6990 3628.87 3806.06 3981.40 0.65 0.91 1.17 -0.34 0.30 0.94
GD19I435 3617.37 3861.83 4103.74 0.41 0.77 1.13 -0.06 0.82 1.70
GD19I439 4141.62 4298.82 4454.37 0.63 0.86 1.09 -0.14 0.42 0.99
GD19I434 3563.70 3756.06 3946.40 0.70 0.98 1.27 -0.92 -0.21 0.47
GD19I438 4207.23 4380.70 4552.37 0.66 0.92 1.18 -0.83 -0.20 0.42
GD19C443 3723.69 3950.14 4174.22 0.62 0.95 1.29 -0.19 0.63 1.44
RC0495 3705.73 3874.13 4040.76 0.92 1.17 1.42 -0.63 -0.02 0.58
RC0496 3697.12 3872.10 4045.25 0.65 0.91 1.17 -0.32 0.31 0.94
RC6842 3367.31 3588.53 3807.43 0.65 0.97 1.30 -0.87 -0.06 0.72
RC7904 3828.48 4017.79 4205.11 0.76 1.04 1.32 -0.91 -0.22 0.46
RC0348 3897.46 4040.17 4181.38 0.78 0.99 1.20 -0.48 0.03 0.54
RC0349 3865.80 4040.14 4212.65 0.94 1.20 1.46 -1.18 -0.55 0.07
SBC200381 4052.65 4227.50 4400.51 0.85 1.11 1.36 -0.79 -0.15 0.47
RC5278 4034.37 4180.22 4324.54 1.03 1.25 1.46 -1.03 -0.49 0.02
RC0377 3656.58 3846.87 4035.16 0.72 1.00 1.29 -0.95 -0.26 0.42
CI8591 3982.42 4189.45 4394.30 0.57 0.88 1.18 -1.23 -0.47 0.26
I10883 4045.20 4182.34 4318.06 0.61 0.81 1.02 -0.67 -0.17 0.32
I17087 3987.64 4150.14 4310.93 0.81 1.05 1.29 -0.62 -0.03 0.55
SBI200135 4200.25 4331.77 4461.90 0.70 0.89 1.09 -0.28 0.19 0.66
IA18617 3813.70 3998.72 4181.80 0.82 1.09 1.36 -0.70 -0.03 0.63
IA18661 3794.43 3984.99 4173.56 0.85 1.13 1.42 -0.26 0.43 1.11

Genotypes          LB     (β1- β2)        UP  LB  βcommon      UP   LB      σ2
di    UP

6266RSF 1.16 0.54 -0.08 0.64 0.84 1.03 -36328 14978 113023
68I68RSF 2.19 1.37 0.55 0.67 0.93 1.18 3793 93498 264927
NEO680 1.78 1.09 0.41 0.74 0.95 1.16 -24405 38312 158165
68I69RSF 1.92 1.24 0.62 1.05 1.25 1.44 -31562 24307 131072
NS6990 1.40 0.61 -0.16 0.72 0.96 1.20 -4744 76784 232584
GD19I435 1.03 -0.05 -1.13 0.54 0.91 1.26 72234 227412 523945
GD19I439 1.13 0.44 -0.25 0.71 0.93 1.15 -22885 41284 163910
GD19I434 2.05 1.20 0.35 0.69 0.95 1.20 10459 106543 290160
GD19I438 1.90 1.13 0.36 0.65 0.89 1.12 -8281 69868 219211
GD19C443 1.33 0.32 -0.67 0.73 1.06 1.38 49216 182375 436835
RC0495 1.95 1.20 0.45 0.94 1.17 1.39 -12996 60640 201358
RC0496 1.37 0.60 -0.17 0.72 0.96 1.20 -6857 72649 224584
RC6842 2.02 1.04 0.06 0.67 0.96 1.25 42848 169927 412773
RC7904 2.11 1.26 0.43 0.75 1.01 1.26 7300 100360 278200
RC0348 1.59 0.96 0.33 0.81 1.00 1.19 -34683 18197 119253
RC0349 2.53 1.75 0.98 0.85 1.11 1.36 -7472 71455 222286
SBC200381 2.04 1.26 0.49 0.85 1.08 1.31 -6988 72399 224107
RC5278 2.40 1.75 1.10 0.95 1.17 1.38 -32223 23016 128579
RC0377 2.11 1.27 0.43 0.70 0.96 1.22 8312 102341 282032
CI8591 2.27 1.35 0.44 0.51 0.80 1.08 26358 137660 350361
I10883 1.59 0.98 0.38 0.60 0.78 0.97 -38903 9939 103279
I17087 1.80 1.08 0.36 0.83 1.04 1.26 -18294 50271 181299
SBI200135 1.28 0.70 0.12 0.75 0.93 1.10 -43012 1898 87721
IA18617 1.94 1.12 0.30 0.84 1.09 1.33 2946 91838 261710
IA18661 1.55 0.70 -0.13 0.94 1.20 1.47 8599 102895 283093
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and response stability of the genotypes being studied, thus enabling the best recommendations to be made (Cochran 
1954, Bradshaw 1965, Ferreira et al. 2006).

In the present study, cultivars 6266RSF, NS6990, GD19I435, GD19I439, GD19C443, RC0496 and IA18661 were 
classified in Toler’s group C, with βi values that did not statistically differ from 1.0; that is, their performance followed 
the environmental average. According to Rosse and Vencovsky (2000), this pattern indicates good adjustment of the 
model to the dataset, which means high predictability. Other authors (Prado et al. 2001, Pacheco et al. 2003, Pacheco 
et al. 2005, Cotes et al. 2006, Couto et al. 2015) also verified this, reporting that genotypes in this group consistently 
yield within the expected average and show little variability even when cultivated in distinct environments, exhibiting 
high phenotypic stability and overall adaptability. Among the aforementioned genotypes, cultivar GD19I439 was found 
to have the highest expected average yield (4298.82 kg ha-1). In this study, most of the genotypes that presented pattern 
C also presented high stability, with σ2

di values that were not significant (Couto et al. 2015, Nascimento et al. 2020), 
particularly cultivars 6266RSF, GD19I435, GD19C443, RC0496 and IA18661.

Cultivars NEO680, 68I69RSF, GD19I438, RC0495, RC0348, RC0349, SBC200381, RC5278, I10883, I17087 and 
SBI200135, even though they presented good stability in terms of σ2

di, proved to be extremely responsive to unfavorable 
environments; thus, they were classified under Toler’s group E, with a doubly undesirable concave response pattern. A 
concave response pattern indicates a genotype with greater than desirable sensitivity in unfavorable environments and 
little response to environmental improvement under favorable conditions (Toler and Burrows 1998). These genotypes 
may be recommended for areas with limited technological access and suboptimal planting conditions, as they yield 
well in low-technology environments (Morais et al. 2008, Peluzio et al. 2010). However, cultivars NEO680, 68I69RSF, 
GD19I438, SBC200381 and SBI200135, despite presenting high expected average yields, cannot be recommended 
because of inconsistencies in their performance before accounting for environmental variations. All the other genotypes 
not previously mentioned in this section were also classified in group E, did not present good stability, and are not 
recommended for future evaluations.

CONCLUSIONS

The methodology described in this study was capable of differentiating the effect of the environment on soybean 
cultivars in terms of yield, allowing us to explore the response of each cultivar to environmental variations. Cultivars 
6266RSF, NS6990, GD19I435, GD19I439, GD19C443, RC0496 and IA18661 presented good stability and overall adaptability, 
and are the most recommended for future evaluations. The other cultivars presented specific adaptability and high 
responsiveness to unfavorable environments; the higher-yielding of these may be recommended for future evaluations 
in low-technology environments.
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