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INTRODUCTION

When successive measurements of a trait are made
on a group of individuals, the initial superiority or
inferiority of each individual in relation to its peers
is normally maintained in later measurements. This
consistency of the relative positions of subjects in
relation to each other during successive measurements
is what is known as repeatability (Turner & Young,
1969). From a statistical point of view, this
repeatability is the correlation between successive
measurements made on a single individual submitted
to repeated evaluations over time (Lush, 1945).
Repeatability represents the proportion of the total
phenotypic variance of a trait that is due to differences
between individuals (Chapman, 1985). Such
differences can be caused by genotypic variation and
permanent changes in the common environment
(Falconer, 1989). Estimates of repeatability allow the
estimation of the number of measurements that need
to be made on each individual in order to obtain
selection with a specific degree of precision and the
minimum of work. The estimated repeatability value
defines the upper limit of broad-sense heritability of
a trait at the individual level (Lush, 1945).

In experimental trials, the value of a specific genotype
under selection is often inferred from the mean of
the total experimental units having this genotype, not
on the bases of measurements taken on a single
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individual. When each individual in each
experimental unit is evaluated over time, repeatability
can be thought of as the correlation between
successive measurements of the same genotype; in
this case successive measurements refers to the means
of the experimental units obtained during the
successive evaluations. In such a situation
repeatability reflects the consistency of the relative
position of the genotypes during successive
measurements and has been considered to determine
the number of measurements that should be made on
each genotype in order to select precisely and with a
minimum of work (Dias & Kageyama, 1998).
Repeatability can also be thought of as the upper limit
of broad-sense heritability of a trait based on the mean
of successive measurements (over time) of the same
genotype (Nyquist, 1991; Jahufer et al., 1994). Thus
repeatability can refer to both the constancy of
measurements and the upper limit of broad-sense
heritability, although the calculated value of
repeatability is not the same for these two situations.
Since repeatability is expressed by variance
components, the repeatability value can be a function
of the type of statistical model adopted, and may vary
according to the different fixed and random effect
models used and the assumptions and restrictions
pertaining to the model.

In this paper we define the parametric values of
repeatability as the correlation between successive
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measurements (over time) of the same genotype and
as the upper limit of broad sense heritability of a trait
as represented by the mean of successive
measurements (over time) of the same genotype.
Split-plot and factorial models and the different fixed
and random effect models and their assumptions and
restrictions are used to derive suitable equations.

MATERIAL AND METHODS

Parametric repeatability value

In experimental trials in which successive evaluations
are made over time for each individual of each
experimental unit, various statistical models can be
used to describe the trait measured in the ith genotype
at the kth time.

In the present study, we considered evaluations made
over several successive years in a trial with a
randomized complete block design. The split-plot and
factorial models (considering their different fixed and
random effects, assumptions and restrictions) were
used for the derivations of repeatabilities as a
correlation between successive measurements (over
time) of the same genotype )( 1ρ , and as the upper
limit of broad-sense heritability of a trait based on
the mean of successive measurements (over time) of
the same genotype )( 2ρ .

A split-plot model in a randomized complete block
experimental design can be described as follows:

ijkikkijjiijk gaabgy ε+++γ+++µ=

where ijky  = the observation concerning the ith

genotype (i=1,...,h) in the jth experimental block
(j=1,...,r) and in the kth year (k=1,...,n); µ  = a
constant inherent in all observations; ig  = the effect
of the ith genotype under the influence of the
permanent environment, ),0(NID 2

gσ ; jb  = the effect
of the jth experimental block, 0b

r

1j
j =∑

=
; ijγ  = the error

(error a) associated with the ith genotype in the jth

experimental block, ),0(NID 2
γσ ; ka = the effect of

the kth year; ikga = the effect of the interaction of
the ith genotype with the kth year; and ijkε  = the error
(error b) associated with the observation of the ith

genotype in the jth experimental block and in the kth

year.

The repeatability expressions 1ρ  and 2ρ  can be

obtained from the following expressions:
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where k.iy  and 'k.iy  are the measurements (each
measurement refers to the mean of blocks) made on
the same genotype in the kth and k’th year of
evaluation, ..iy  is the mean of the measurements
made on the same genotype, and )MSG(E  is the
expected mean square for the genotypes.

Based on the split-plot model and on the expected
mean squares of the genotypes described in Table 1
when ijkε ~ ),0(N 2

εσ  and in Steel & Torrie (1980)
when ijkε ~ ),0(NID 2

εσ , we can see that 1ρ  e 2ρ  can
be expressed in different ways, depending on whether
the ak effect is random or fixed.
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  (equation a1)

If we consider that ka ~ ),0(NID 2
aσ , ikga ~ ),0(NID 2

gaσ ,
ijkε ~ ),0(N 2

εσ  and 2
'ijkijk ),cov( εθσ=εε  (where the

parameter θ  is the correlation between the
measurement errors of the same genotype in the same
block) are assumptions and the remaining covariances
between errors are equal to zero then:
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Table 1.  Expected mean squares based on a split-plot model with a randomized complete block design with jb
fixed, ig  random, ijkε ~ ),0(N 2

εσ , 2
'ijkijk )e,ecov( εθσ=  and the remaining covariances between errors equal to

zero.
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If the ak effect is fixed and ikga ~ ),0(NID 2
gaσ  and

ijkε ~ ),0(NID 2
εσ  are assumptions, then:
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 (equation b1)

Considering ijga ~ ),0(NID 2
gaσ , ijkε ~ ),0(N 2

εσ ,
2

'ijkijk ),cov( εθσ=εε  as assumptions and the remaining
covariances between errors as equal to zero, we have:
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n

1k
ik =∑

=
 for all values of i and

∑
=

=
n

1k
k 0a  are restrictions, while ikga ~ )

n
1n,0(N 2

gaσ− ;
0)ga,gacov( k'iik =  for all values of k, i and i’ (i ≠ i’);

ijkε ~ ),0(N 2
εσ ; and 2

'ijkijk ),cov( εθσ=εε  are assumptions

Sources of variation E(MS)1/ E(MS)2/ E(MS)3/ 
Blocks (B) [ ] ∑

=
γε −

+σ+θ−+σ
r

1j

2
j

22 b
1r

hnn)1n(1  [ ] ∑
=

γε −
+σ+θ−+σ

r

1j

2
j

22 b
1r

hnn)1n(1  [ ] ∑
=

γε −
+σ+θ−+σ

r

1j

2
j

22 b
1r

hnn)1n(1  

Genotypes (G) [ ] 2
g

2
ga

22 nrrn)1n(1 σ+σ+σ+θ−+σ γε  [ ] 2
g

2
ga

22 nrrn)1n(1 σ+σ+σ+θ−+σ γε  [ ] 2
g

22 nrn)1n(1 σ+σ+θ−+σ γε  
Error (a) [ ] 22 n)1n(1 γε σ+θ−+σ  [ ] 22 n)1n(1 γε σ+θ−−σ  [ ] 22 n)1n(1 γε σ+θ−−σ  
Years (A) 2

a
2
ga

2 hrr)1( σ+σ+θ−σε  2
n

1k
.k

2
ga

2 )aa(
1n

hrr)1( ∑
=

ε −
−

+σ+θ−σ  ∑
=

ε −
+σ+θ−σ

n

1k

2
k

2
ga

2 a
1n

hrlr)1(  

G x A 2
ga

2 r)1( σ+θ−σε  2
ga

2 r)1( σ+θ−σε  2
ga

2 lr)1( σ+θ−σε  
Error (b) )1(2 θ−σε  )1(2 θ−σε  )1(2 θ−σε  
 



2003, Brazilian Society of Plant Breeding

4 Crop Breeding and Applied Biotechnology, v. 3, n. 1, p. 1-10, 2003

and the remaining covariances between errors are equal
to zero then:
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The above equations should be considered in the light
of a factorial model in a randomized complete block
design where ijkikkjiijk gaabgy ε+++++µ=
and these are the terms of the equation which was
defined earlier.

According to the fixed and random effect models and
their assumptions and restrictions and the expected
mean squares for genotypes described in Table 2 when

ijkε ~ ),0(N 2
εσ  and in Steel & Torrie (1980) when

ijkε ~ ),0(NID 2
εσ , expressions for 1ρ  are obtained

which are similar to those obtained for the split-plot
model. In the factorial model, however, 

r

2
γσ  is not

added to the numerators or the denominator of the
expressions. The expressions for 2ρ  are also similar
to those obtained for the split-plot model, although
in the factorial model 

r

2
γσ  is not added to the

denominator of the expression. Furthermore, 2ρ
cannot be derived when 2

'ijkijk ),cov( εθσ=εε , because
it is not possible to estimate 2

gσ  without adopting
certain restrictions, with an equal number of equations
being presented with respect to the parameters to be
estimated (Table 2).

ANOVA estimator

Traditionally, the analysis of variance has been
used to estimate the repeatability coefficient.
Regardless of the model or the assumptions and
restrictions used for each model, the ANOVA
estimators for 1ρ  and 2ρ  are given by the
expressions presented below:
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MSGAMSGˆ1 −+

−=ρ  and 
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ˆ
2
g
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where 1ρ̂  and 2ρ̂  = ANOVA estimators for 1ρ  and
2ρ , MSG  = genotype mean square, MSGA  =

genotype x year interaction mean square, and 2
gσ̂  =

2
gσ  estimator.

The expected genotype and genotype x year
interaction mean squares necessary to obtain 1ρ̂  and

2ρ̂  using the split-plot and factorial models in
randomized complete block designs are presented in
Tables 1 and 2 when ijkε ~ ),0(NID 2

εσ  and in Steel
& Torrie (1980) when ijkε ~ ),0(N 2

εσ .
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Table 2.  Expected mean squares based on a factorial model with a randomized complete block design with jb
fixed, ig  random, ijkε ~ ),0(N 2

εσ , 2
'ijkijk )e,ecov( εθσ=  and the remaining covariances between errors equal to

zero.
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A numerical example

In order to develop our argument we shall use the
experiment described in detail by Carvalho (1999)
as a numerical example. The experiment consisted
of a randomized complete block trial with seven
replicates in which the mean number of healthy fruits
per plant (MNHFPP) was assessed for 20 cocoa plant
hybrids obtained from crosses between different
cocoa clones. Each plot consisted of 12 plants
distributed in three rows and four columns with a 3.0
x 3.0 m plant spacing. Two rows of cocoa trees were
planted around the experiment area as a border.
Temporary shading was provided by 3.0 x 3.0 m
spaced banana trees and by cassava plants, using four
cassava plants per cocoa tree. Permanent shading was
also provided by planting 24.0 x 24.0 m spaced
Erythrina glauca, with one additional plant on the
diagonal.

The analysis of variance was carried out using split-
plot and factorial models and the expected mean
squares given in Tables 1 and 2 when ijkε ~ ),0(N 2

εσ
and in Steel & Torrie (1980) when ijkε ~ ),0(NID 2

εσ .
The ρ1 and ρ2 estimates were calculated using an
ANOVA estimator as indicated in the last section.

RESULTS AND DISCUSSION

Correlation between successive measurements

The 1ρ  estimates for the mean number of healthy
fruits per plant (MNHFPP) always had the same value

(Tables 3 and 4), regardless of the assumptions and
restrictions used for each model. This repeatability
is a function of the covariances )y,ycov( 'k.ik.i ,

)y(V k.i  and )y(V 'k.i  which can be estimated from
the variance components associated with the
particular model. Adopting different models or
different assumptions leads to variable values for the
variance components (Searle, 1971; Steel & Torrie,
1980). However, combining these components results
in the same estimate when expressing the covariances
mentioned, as can be verified from the fact that the
only ANOVA estimator was obtained for 1ρ , which
is a function of only MSG and MSGA, which do not
vary in the statistical model adopted. From a practical
point of view, this invariance increases the reliability
of the use of this repeatability estimate for selection
purposes.

The magnitude of 1ρ  depends on the nature of the
trait, the genetic properties of the population and the
environmental conditions under which the genotypes
are maintained. It should be pointed out that even
though in the present study 1ρ  was obtained in trials
involving randomized complete blocks, the same
expression for 1ρ  could be derived when completely
randomized and latin-square designs are considered.
In latin-square designs row and column effects should
be considered to be fixed, so that the )y,ycov( 'k.ik.i

will not be expressed by variances due to these effects.
In randomized complete block designs, the block
effect is considered to be fixed )0b(

r

1k
k =∑

=
 for analogous

reasons; fixed blocks are quite common in agricultural
research (Kempthorne, 1952; Steel & Torrie, 1980;
Piepho, 1994).
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Table 3.  Analysis of variance and repeatability
estimates for the mean number of healthy fruits per
plant (MNHFPP) assessed in a cocoa hybrid
experiment using a factorial model in a randomized
complete-block design.

1/ 2ρ  estimates considering jb  fixed, ig  random,
ikga ~ ),0(NID 2

gaσ  e ijkε ~ ),0(NID 2
εσ ; 2/

2ρ  estimates
considering jb  fixed, ig  random, 0ga

n

1k
ik =∑

=

, for all i,
and ijkε ~ ),0(NID 2

εσ ; 3/ P < 0.01.

Table 4.  Analysis of variance and repeatability
estimates for the mean number of healthy fruits per
plant (MNHFPP) assessed in a cocoa hybrid
experiment using a split-plot model in a randomized
complete-block design.

1/ 2ρ  estimates considering jb  fixed, ig  random and

ikga ~ ),0(NID 2
gaσ .  By adopting 0)e,ecov( 'ijkijk =  or

2
'ijkijk )e,ecov( θσ= , we shall have the same 2ρ  estimate;

2/ 2ρ  estimates considering jb  fixed, ig  random and
0ga

n
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ik =∑

=
.  By adopting 0)e,ecov( 'ijkijk =  or

2
'ijkijk )e,ecov( θσ= ,  we shall have the same 2ρ

estimate; 3/ P < 0.01;

In addition to the fixed block effect, several other
assumptions are needed for the derivation, definition
and use of 1ρ . One assumption can be that the
variance between genotype measurements is the same
over successive evaluation periods (years etc.), i.e.

))y(V)y(V( 'k.ik.i = . If this assumption is true then
the repeatability estimate, defined as the correlation
between successive measurements (over time) of the
same genotype, can be considered to be the regression
coefficient of a measurement as a function of the other
(Turner and Young, 1969). In addition, )y(V k.i  can
be subdivided into variance between and within
genotypes.

The variance between genotypes reflects the
permanent differences between genotype
measurements caused by the permanent environment
and by genetic differences, expressed as )y,ycov( 'k.ik.i .
In the study, we considered not only the genetic
variance component confounded with the permanent
environmental component )( 2

gσ  as permanent

differences, but also 
r

2
γσ

, 2
gan

1 σ− , 
1n

2
ga

−
σ

−  and 
r

2
εθσ  , alone

or in combination. Thus, regardless of the statistical
model used, 1ρ  represents the proportion of )y(V .ij

which is caused by permanent differences between
genotype measurements.

The within genotype variance measures the variation
in measurements of the same genotype caused only
by differences in the temporary environment,
expressing the difference between )y(V k.i  and

)y,ycov( 'k.ik.i . Depending on the assumptions used,
differences in the temporary environment can be
represented by 

r

2
2
ga

εσ
+σ , 

r
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2
2
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r1n
n 2

2
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εσ
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2
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εσ
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−
.

Another assumption to be considered in estimating
1ρ  is that all the genes that affect a trait should be

expressed in all measurements. In other words, the
expression of the trait during the various
measurements will depend on identical physiological
and developmental processes (Falconer, 1989;
Chapman, 1985). Furthermore, when the split-plot
model is used to derive 1ρ , it is necessary to consider
that the mean plot-error )( .iγ  will be constant in
successive measurements of a genotype, although this
is not strictly valid. Even if some of these assumptions
are not taken into account, repeatability can be valid
for application purposes.

When the genes that affect a specific measurement
are not entirely the same as those that affect other

Sources d.f. Mean squares 
  NMFSP 
Blocks (B) 6 764.458 
Genotypes (G) 19 674.995 ** 
Years (A) 5 7162.621 ** 
G x A 95 59.913 ** 
Error 714 39.686 

1ρ̂  ± )ˆ(EP 1ρ   0.621 ± 0.091 

2ρ̂ 1/  0.911 

2ρ̂ 2/  0.941 

Mean squares Sources d.f. MNHFP 
Blocks (B) 6 764.458 
Genotypes (G) 19 674.995 3/ 
Error (a) 114 72.574 
Years (A) 5 7162.621 3/ 
G X A 95 59.913 3/ 
Error (b) 600 33.437 

1ρ̂  ± )ˆ(EP 1ρ   0.621 ± 0.091 

2ρ̂ 1/  0.853 

2ρ̂ 2/  0.892 
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measurements, the variation within genotypes will
not be only caused by the temporary environment.
The variance between the means of genotype
measurements, i.e. ))y(V( ..i , will increase due to the
additional variance produced by the genotype x
environment interaction. This additional variance may
be sufficient to counter the reduction in variance
caused by the temporary environment and
consequently offset the increase in the precision of
inference about the true genotype value, which
represents the major advantage to be obtained from
multiple measurements (Falconer, 1989).

An other important factor is that 1ρ  estimates always
have the same value regardless of the statistical model
used, so that data processing can be simplified by
adopting a model that uses the mean of the
experimental units of each genotype during each year
(Cruz & Regazzi, 1994; Dias & Kageyama, 1988).
This model can be represented as:

ikkiik agy Ε+++µ=

where iky  = the mean of the jth blocks (j=1,...,r)
referring to the ith genotype (i=1,...,h) during the kh
year (k=1,...,n), µ  = a constant inherent in all means
for each genotype during each year, ig  = the effect
of the ith genotype under the influence of the
permanent environment, ka  = the effect of the kth

year, and ikΕ  is the residue including k.iikga ε+ . On
the basis of this model, 1ρ̂  is expressed by:

ReMS)1n(MSG
ReMSMSGˆ1 −+

−=ρ

where 1ρ̂ = the estimator of 1ρ , MSG  =  genotype
mean square, and ReMS  = residue mean square.

The same estimator of 1ρ  can also be obtained by
considering the correlation between measurements
of the same genotype made at different locations, but
in this case successive measurements are not made
on the same individuals. In general, the factorial
model is adopted, which uses the effect of the jth block
on the kth location )b( )k(j , instead of jb , to describe
the trait measured for the ith genotype at the kth location
(Cruz & Regazzi, 1994). However, the 2

gσ
component only represents genetic variance because
the effect of the ith genotype is not under the influence
of the permanent environment as is the case for
repeatability derivation.

Upper limit of heritability

In contrast to 1ρ̂ , repeatability estimates at the upper
limit of broad-sense heritability based on the mean
of successive measurements (over time) of the same
genotype ( 2ρ̂  values), for MNHFPP, acquire different
values depending on the fixed and random effect
models and their assumptions and restrictions used
(Tables 3 and 4). This is due to the fact that 2ρ
expresses the proportion of )y(V ..i  attributable to
the genetic variance component confounded with the
permanent environment. As we stated earlier, the use
of different statistical models leads to different
estimates of one or more variance components.
Repeatability also varies with the nature of the trait,
the genetic properties of the population and  the
environmental conditions under which the genotypes
are maintained.

In the estimation of 2ρ  it is possible to remove the
variance caused by the temporary environment, but
the variance due to the permanent environment usually
continues to be totally or partially confounding with
genetic variance. If the part of the proportion of
variance due to the permanent environment, )

r
(

2
γσ , is

not confounded with genetic variance, the value of
2ρ̂  tends to be lower when the split-plot model is

used than when the factorial model is used,
considering the same restrictions and assumptions.

When the factorial model is used, 2ρ  estimates are
not obtained when ),cov( 'ijkijk εε  has the value 2

εθσ ,
since it is not possible to estimate 2

gσ  (Table 2).
However, the same 2ρ  estimate is obtained when

0),cov( 'ijkijk =εε  or 2
'ijkijk ),cov( εθσ=εε  is used

in the split-plot model because

the estimator of 2
gσ  is the same in the two situations

(Table 5). We should emphasized that even
considering 2

'ijkijk ),cov( εθσ=εε , as done by
Danford et al. (1960), genetic variance continues to
be partially confounded with the permanent
environment in the 2

gσ  component. If this component
represented only genetic variance with respect to

2
'ijkijk ),cov( εθσ=εε , 2ρ  would be heritability itself,

which, in fact, is not the case.

Sometimes 2ρ  can be much higher than heritability,
but never lower (Jahufer et al., 1994) because 2

gσ
does not represent genetic variance only, and the
genetic and non-genetic components of 2

gσ  are
assumed to be variances and therefore cannot be
negative. However, the variance caused by the effects
of the permanent environment confounded with
genetic variance is a covariance and can be negative.
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Table 5. Estimators of 2
gσ  for a split-plot model, with jb  fixed and ig  random.

Restriction or assumption1/
Estimator of 2

gσ 2/

ikga ~ ),0(NID 2
gaσ

nr
MSGAMSEaMSEbMSG −−+

0ga
n

1k
ik =∑

=

 for all i
nr

MSEaMSG −

1/ By adopting 0)e,ecov( 'ijkijk =  or 2
'ijkijk )e,ecov( θσ= , the same 2

gσ  estimator is obtained; 2/ MSG  =
genotype mean square, MSEa  = error (a) mean square, MSEb  = error (b) mean square, MSGA  = genotype
x year interaction mean square.

According to Chapman (1985), this variance is a
measure of the extent to which these permanent
environmental effects cause covariance between
repeated measures of the same trait. In most cases
this covariance is positive since the influence of these
effects results in measurements that deviate from the
mean in the same direction. However, Chapman
reported that under unusual circumstances the
influence of an environmental effect may cause an
increase in mean performance during one year and a
reduction of mean performance during the next. When
this influence is important, the covariance caused by
these permanent environmental effects may be
negative and may cancel the contribution of 2

gσ  and
cause 2ρ  to acquire a lower value than heritability,
i.e. zero or even negative.

Another important point is that 2ρ̂  increases with an
increase in the number of measurements )n( . As n
increases the variance due to the temporary
environment decreases (Lush, 1945), and
consequently the variance between the means of
genotype measurements decreases and 2ρ̂  increases.
When ijga ~ ),0(NID 2

gaσ  is considered, for example,
the reduction in variance due to the temporary
environment is n/1  of the value obtained with annual
measurements.

Repeatability estimates such as upper heritability
limits are useful in predicting the genetic gain
obtained by selection (Turner & Young, 1969). The
increase of 2ρ̂  with increasing number of
measurements tends to increase progress per
generation. However, when several evaluations are
performed, the interval between generations tends to
increase, reducing the progress per year. This partially
reduces the gain obtained by the genetic gain per
generation mentioned above, and the consideration
of multiple measurements causes a decrease in the

selection differential (Lush, 1945). The use of 2ρ̂  in
the prediction of selection gain may prove to be
unreliable because it only reflects only the upper limit
of heritability data, although in some trials (e.g. those
involving perennial plants) 2ρ̂  is obtained instead of
broad sense heritability due to the long time required
to estimate this heritability.
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RESUMO

Repetibilidade de caracteres avaliados em ensaios
experimentais

Derivação das expressões de repetibilidade e obtenção
dos respectivos estimadores de ANOVA foram
realizadas, utilizando-se os modelos parcela
subdividida e fatorial em delineamentos em blocos
completos casualizados, bem como diferentes
restrições, naturezas e pressuposições para os efeitos
de cada modelo estatístico. Independentemente do
modelo e das restrições, das naturezas e das
pressuposições utilizadas, estimativas de
repetibilidade como correlação entre medidas
sucessivas (no tempo) de um mesmo genótipo
assumem sempre o mesmo valor. Isto possibilita a
utilização do modelo que utiliza as médias das
unidades experimentais (média dos blocos) de cada
genótipo, em cada tempo, para o cálculo desta
repetibilidade. Para as estimativas de repetibilidade
como limite superior da herdabilidade em sentido
amplo, em nível de média de medidas sucessivas (no
tempo) de um mesmo genótipo, esta independência
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não foi verificada. Uma discussão sobre repetibilidade
de caracteres avaliados em ensaios com
delineamentos experimentais foi realizada.
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