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Abstract: This study was conducted to test the significance of adding row and 
column factors in the frequentist and Bayesian models used in the evaluation 
of a population of Passiflora edulis, as well as selecting promising genotypes to 
form the next generation. The following parameters were evaluated: number of 
fruits, yield, fruit weight, transverse fruit diameter, longitudinal fruit diameter, 
pulp percentage, skin thickness and total soluble solids. For the Bayesian model, 
two priors were considered, namely, inverse gamma and a priori distribution 
with extended parameters. The model with a priori distribution with extended 
parameters showed lower root mean square error and higher correlation coef-
ficient between observed and predicted values than the inverse gamma model. 
Furthermore, for a selection intensity of 37%, the mixed and Bayesian models 
selected practically the same progenies in both experiments. The use of the 5-fold 
cross-validation technique indicated that both tested models were efficient.
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INTRODUCTION

Brazil is considered the world’s largest passion fruit producer, generating 
602 thousand tons of the fruit from a cultivated area of approximately 43,000 
ha, which amounts to an average yield of 14 t ha-1. These estimates indicate the 
production potential and the economic importance of this crop for the country. 
About 62% of national production comes from the northeast, followed by the 
southeast, south, north, and center-west regions. However, when it comes to 
yield, the south region is the leader, accounting for about 25% of domestic 
production (IBGE 2018).

The passion fruit yield in the state of Rio de Janeiro was 6,000 t ha-1, which 
can be considered low compared with the 16,000 t ha-1 of Bahia state, the 
largest producer. This low yield is due, among other factors, to the lack of high-
yielding genotypes, large variability in commercial orchards, lack of improved 
cultivars adapted to the soil, and climatic and environmental conditions of the 
growing region (Gonçalves et al. 2007). In the current Brazilian scenario, yield 
and fruit quality, as well as disease control in passion fruit cultivation, have 
become extremely important issues to ensure the sustainability of this crop. 
Unfortunately, these factors have contributed to a reduction in average yield in 
recent years in Brazil. Given the complexity of this scenario, breeding programs 
have employed a variety of methods to address these challenges.
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In the field of passion fruit breeding, several methods are used to deal with spatial variation problems, especially when 
it comes to experiments. An important example is the mixed model methodology (REML/BLUP), which plays a crucial 
role in this context (Viana and Resende 2014). This approach has become standard for estimating genetic parameters 
and predicting genotypic values, being widely adopted in several breeding programs. The work carried out by Santos 
et al. (2015) with individuals from a segregating population from an interspecific cross of passion fruit showed that the 
REML/BLUP method was effective in identifying superior genotypes. 

In turn, the Bayesian approach has advantages such as allowing the incorporation of previous distributions into 
the model, especially when the availability of information is limited (Silva et al. 2018). In addition to these techniques, 
post-hoc blocking Row-Col emerges as another promising strategy to control the local effect. This approach involves 
superimposing a structure of rows and columns over the original layout, generated in estimates of model parameters 
with greater precision (Machado et al. 2020).

However, using effective methods goes beyond that. It is necessary to consider the combination of appropriate 
approaches and techniques to face the specific challenges related to yield, fruit quality and disease control in passion 
fruit cultivation. This integration of methods, combined with a holistic approach, is key to driving progress in improving 
this crop and ensuring its long-term sustainability. In this context, the present study was conducted with the objective of 
estimating the components of variance, heritability and selection gain through the mixed model and Bayesian methods. 
In addition, we sought to evaluate the application of the post-hoc blocking Row-Col technique, using chi-square statistics, 
for real data variables from passion fruit breeding experiments.

MATERIAL AND METHODS

A total of 97 full-sib progenies from the fourth cycle of recurrent selection of the UENF breeding program were 
evaluated. These progenies were obtained by crossing 23 half-sib progenies selected by Cavalcante et al. (2019). The 
experiment was conducted on Santo Antão farm, belonging to Instituto Federal Fluminense, in Cambuci - RJ, Brazil (lat 
21° 34’ S, long 41° 54’ W, alt 35 m asl). The experiment was laid out in a randomized block design with two replicates, 
where each plot consisted of three plants (582 plants). To work with the post-hoc blocking Row-Col technique, a grid 
with 19 rows and 15 columns was implemented over the experimental layout.

The following variables were evaluated: number of fruits (NF), by counting the total number of fruits in each plot; 
total yield (YLD, kg plot-1), determined by measuring the amount harvested during the experiment; fruit weight (FW, g), 
calculated as the arithmetic mean of the weight of 15 fruits sampled per plot; fruit longitudinal diameter (LGT, mm); 
fruit transverse diameter (TVS, mm); fruit pulp percentage (PP, %), obtained as the ratio between pulp weight and total 
fruit weight; peel thickness (PT, mm), determined in the median portion of fruits cut transversally, along the larger 
diameter; total soluble solids content (TSS, °Brix), determined with an ATAGO N1 digital handheld refractometer, with 
reading performed in the range from 0 to 95 °Brix in aliquots of pulp juice.

Models
To model the variables, two models were proposed. The first model used was a mixed linear model: y = 1μ + Z1u1 + Z2u2 

+ ε, where Ynx1 is the vector of phenotypic observations; 1nx1 is a column matrix of ones; u1 is the vector of random effects 
for blocks associated with incidence matrix Z1, with probability distribution u1~N(0, Iσ2

block); u2 is the vector of random 
effects for progeny associated with incidence matrix Z2, with probability distribution u2~N(0, Iσ2

progeny); ε is the vector of 
random errors, with probability distribution ε~N(0, Iσ2

error), in which ε|σ2
error~N(0, Iσ2

error); and the joint distribution of the 
observed data is given by E(y) ~N(1μ + Z1u1 + Z2u2, Iσ

2
e), here referred to as “reduced model”.

Subsequently, the post-hoc blocking Row-Col method was applied on the reduced model by tracing a grid with 13 rows 
and 18 columns over the experimental layout, thus modifying the model, which was then termed “full model”: y = 1μ + 
Z1u1 + Z2u2 + Z3u3 + Z4u4 + ε, where Ynx1 is the vector of phenotypic observations; 1n x 1 is a column matrix of value 1; u1 is 
the vector of random effects for blocks associated with incidence matrix Z1, with probability distribution u1~N(0, Iσ2

block); 
u2 is the vector of random effects for progeny associated with incidence matrix Z2, with probability u2~N(0, Iσ2

progeny); u3 
is the vector of random effects for row associated with incidence matrix Z3, with probability distribution u3~N(0, Iσ2

row); 
u4 is the vector of random effects for column associated with incidence matrix Z4, with probability distribution u4~N(0, 
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Iσ2
column) ; ε is the vector of random errors, with probability distribution ε~N(0, Iσ2

error); and the joint distribution of the 
observed data is given by E(y)~N(1μ + Z1u1 + Z2u2 + Z3u3 + Z4u4, σ

2
e). The models were compared by the likelihood ratio 

test (LRT) using chi-square statistics, adopting two degrees of freedom and a 5% probability level. After both models 
were tested under the frequentist approach, they were also tested under the Bayesian approach. The joint distribution 
of the data observed under this approach was obtained from the following distributions:

y|u1, u2, u3, u4, σ
2
progeny, σ

2
block, σ

2
row, σ2

column, σ
2
error ~N(1μ + Z1u1 + Z2u2 + Z3u3 + Z4u4, Iσ

2
e)

where μ~N(μ0, σ
2
0); u1|σ2

progeny~N(0, Iσ2
progeny);σ

2
progeny~IG(ν = ν1, V = V1); u2|σ2

block~N(0, Iσ2
block);σ

2
block~IG(ν = ν2, V = V2); u3|σ2

column~N(0, 
Iσ2

column);σ
2
column~IG(ν = ν2, V = V3); u4|σ2

row~N(0, Iσ2
row);σ2

row~IG(ν = ν2, V = V4); and σ2
error~IG(ν = ν0, V = V0). This was termed 

“full Bayesian model”. For the reduced model, as in the frequentist approach, only the effects of block, progeny, and 
error were maintained, with the same distributions of the variances described above. To improve the estimates in the 
Bayesian approach, two priors were defined for the parameters, here called Bayes I (ν=1; V=0.002; alpha.mu=0; alpha.
V=0; Classification μ=Inverse Gamma (IG) N[0.10^8]) and Bayes II (ν=1; V=1; alpha.mu=0; alpha.V=252; Classification 
μ= Half-Cauchy (HC) N[0.10^8]).

The choice of prior was based on the smallest square root of the mean squared error and on the correlation between what 
was observed and predicted by the model, so prior II was chosen for presenting such more accurate metrics. It is noteworthy 
that the non-informative a priori models did not converge, as some variance components are low. The work included 5-fold 

cross-validation. The metrics root mean square error of the cross validation (predictive efficiency PE = ΣN

i=1(ŷi–yi)
2

N ) and predictive 

ability coefficient PC = 100.( cov(ypredicted;yobserved)
Sypredicted.Syobserved

) were considered as described by Silva al. (2018). Bayes prior II was 

chosen because it showed more accurate metrics than prior I. The choice of prior distribution was based on the suggestion 
of Hadfield (2021), adding the extension parameters alpha.mu and alphaV. The choice of the model (prior) under the 
Bayesian approach was made considering the smallest root mean square error (RMSE), based on the smallest value of 
Deviance Information Criterion (DIC) between the models. The models were considered equal when |Δ| < 2 between 
their DIC (Spiegelhalter et al. 2002). The predictive ability of the model was also considered in a 5-fold cross-validation. 
In each fold, randomly, 80% of the data was used for modeling, and 20% of the data was used to observe the discrepancy 
with the model prediction when choosing the prior. Thus, the average correlation between the predicted dependent 
variables and those observed for the cross-validation folds was considered. This same model choice approach was 
repeated when the frequentist and Bayesian models were compared, by performing a new cross-validation, but comparing 
the models by predictive ability and mean square error.

To verify the effects of row and column factors, each model was fitted with and without the technique (post-hoc 
blocking row-column). The comparison between the models was performed using the likelihood ratio test (LRT) using 
the statistic LRT = 2[In(Model of interest) − In(Model under Ho)], where LRT under Ho has an approximate Chi-Square 
distribution with 2 (two) degrees of freedom. As for Bayesian models, the choice and comparison of models was made 
by the Deviance Information Criterion (DIC) with several iterations equal to 7000000, thinning = 20, burn-in = 200000. 
To evaluate the percentage (index) of coincidences of the selected progenies, the common percentage of progenies was 
selected by the two estimation methodologies for each of the three levels of selection intensity: 37%, 25% and 15%.

All statistical analyses were performed using the R software (R Core Team 2019) using the Sommer (Covarrubias 
2016, 2018), MCMCglmm (Hadfield 2010, Hadfield and Nakagawa 2010) and Imer4 (Bates et al. 2014) libraries. The 
convergence of the MCMC chains was checked by the criterion of Geweke (1992) using the Coda package (convergence 
diagnosis and output analysis for MCMC, Plummer et al. 2006) and the DCCPs were obtained according to Hadfield (2010). 

Genetic parameters
Some genetic parameters were estimated by both approaches, using the full or reduced model, according to 

their fit for each variable. If the full model was significantly different from the reduced model for a given variable, 
this full model was used to estimate the genetic parameters. Broad-sense heritability (h ̂2) was estimated as shown 
below: h ̂2 = σ2̂

progeny

σ2̂
progeny+σ2̂

block+σ2̂
column+σ2̂

row+σ2̂
error

, where (σ̂2error) is the estimate of residual variance; (σ̂2
block) is the estimate of 

variance due to the block factor; (σ̂2column) is the estimate of variance due to the column factor; (σ̂2row) is the estimate of 



4 Crop Breeding and Applied Biotechnology - 23(3): e445523311, 2023

AO Souza et al.

the variance due to the row factor; and σ̂2progeny is the estimate of genotypic variance.

Confidence intervals for heritability were obtained for the frequentist approach (CI-h ̂2) and the credible interval for 
heritability was obtained for the Bayesian approach. At the end, a ranking was created by selecting 30 individuals for 

which selection gain was obtained by the delta method, based on: GS = 100. ( X ̅
30 − X ̅

G

X ̅
G

), where selection gain is relative 

to the overall mean (X ̅
G) and the mean of the first 30 (thirty) progenies selected (X ̅

30). 

RESULTS AND DISCUSSION

The significance of the factors (RCB + Row-Col) was tested by the likelihood ratio test (LRT) using chi-square statistics 
(Table 1). The full model was significant only for the production variables (NF and YLD), indicating that it had a better fit 
for these two variables (p<0.05). On the other hand, the Deviance Information Criterion (DIC) (Table 2) shows that the 
full model had a better fit for all variables, except PT and TSS.

Table 1. Likelihood ratio test (LRT) for comparison between the two proposed models: randomized complete blocks (RCB) and post-
hoc blocking Row-Col

Variable Model Deviance df Statistics (D) p-value

YLD RCB + Row-Col 1289.00 2 33.50* <0.001RCB 1322.50

NF RCB + Row-Col 2051.00 2 29.00* <0.001RCB 2022.00

FW RCB + Row-Col 1789.10 2 2.20 0.3343RCB 1791.30

TVS RCB + Row-Col 1212.10 2 5.10 0.0772RCB 1217.20

LGT RCB + Row-Col 1075.80 2 1.79 0.6353RCB 1074.01

PT RCB + Row-Col 618.07 2 0.00 1.000RCB 618.07

PP RCB + Row-Col 1156.60 2 2.30 0.3257RCB 1158.90
TSS RCB + Row-Col 622.16 2 0.06 0.9722RCB 622.22

Source: developed by the authors. (*) significant at the 5% probability levael by the LRT; Yield (YLD), Number of Fruits (NF), Fruit Weight (FW), Fruit Transverse Diameter 
(TVS), Fruit Longitudinal Diameter (LGT), Peel Thickness (PT), Pulp Percentage (PP), and Total Soluble Solids (TSS). 

Table 2. Comparison of the Bayesian models in randomized complete blocks (RCB) and Row-Col by Deviance Information Criterion 
(DIC) – Bayes

Variable Model DIC W Δ
Convergence

Geweke (1992) Heidenberg & Welch (1983)

NF RCB + Row-Col 2005.57 1.00 -48.30d Converged Converged
RCB 2053.87 0.00 Converged Converged

YLD RCB + Row-Col 1271.72 1.00 -54.99d Converged Converged
RCB 1326.71 0.00 Converged Converged

FW RCB + Row-Col 1789.65 0.85 -3.43d Converged Converged
RCB 1793.08 0.15 Converged Converged

TVS RCB + Row-Col 1206.08 0.98 -7.59d Converged Converged
RCB 1213.67 0.02 Converged Converged

LGT RCB + Row-Col 1073.92 0.60 0.76i Converged Converged
RCB 1074.68 0.40 Converged Converged

PP RCB + Row-Col 1158.35 0.84 -3.37d Converged Converged
RCB 1161.72 0.16 Converged Converged

PT RCB + Row-Col 609.87 0.17 3.22d Converged Converged
RCB 606.65 0.83 Converged Converged

TSS RCB + Row-Col 671.18 0.25 2.15d Converged Converged
RCB 669.03 0.75 Converged Converged

Source: developed by the authors. Number of Fruits (NF), Yield (YLD), Fruit Weight (FW), Fruit Transverse Diameter (TVS), Fruit Longitudinal Diameter (LGT), Pulp Percent-
age (PP), Peel Thickness (PT), and Total Soluble Solids (TSS). Δ = DICF – DICR, where DICF is the Deviance Information Criterion of the full model, DICR Deviance Information 
Criterion of the reduced model. Prior as suggested by Hadfield, Jarrod (2021) with addition of the extension parameters alpha.mu and alpha.V: (i) Models are equal when 
|Δ| < 2 (Spiegelhalter et al. 2002) (d) Models are different when |Δ| ≥ 2 (Spiegelhalter et al. 2002) The choice between the two models was based on the lower value of 
DIC. W is the posterior probability of the model (Wilberg and Bence 2008).
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With respect to the mixed-model approach, Silva et al. (2016) found the same results when the post-hoc blocking 
Row-Col technique was added to the model, that is, only the YLD and NF variables showed significance (p<0.05). Because 
both variables result from the total sum of the plot and are not sampled in fruits with a replicate, a variance was 
captured by Row-Col, which was not necessary when there were more observations in the other variables. Gezan et al. 
(2006) and Machado et al. (2020), compared the efficiency of Row-Col with the randomized block design and obtained 
more accurate estimates of heritability using the former. However, in general, the randomized block design is efficient 
when the variability within the replicates is relatively small. This is a rare occurrence when a high number of genotypes 
is evaluated, especially in large-scale experiments, as is the present case. In this study, the post-hoc blocking Row-Col 
technique was more efficient to estimate genetic parameters, since when the observations were modeled via Bayesian 
models, only the variables TVS, PT, and TSS showed no significance for the RCB + Row-Col factor.

In this case, as it is the fourth cycle of recurrent selection, the estimates of genetic parameters (Tables 3 and 4) 
reveal that the greatest selection gains were obtained for YLD and NF. By the frequentist method, they also reveal the 
non-existence of genetic variability (or not captured by the model) and little selective potential among the passion 
fruit progenies under study, which is confirmed by the frequentist confidence intervals for heritability containing zero. 
This result could also be due to high environmental variation. This makes it difficult to fit a model properly, especially 
when this environmental variation results in data with a large standard deviation. Thus, the passion fruit breeder who 
sporadically may face high environmental variability, such as long periods of drought, high temperatures, and presence 
of diseases like CABMV, can opt for a model that, although more complex and computationally costly, will provide more 
accurate estimates.

Table 3. Estimation of genetic parameters of 97 passion fruit progenies from the fourth cycle of recurrent selection via mixed models 
(REML/BLUP)

Variable σ̂2progeny σ̂2block σ̂2row σ̂2column σ̂2error h ̂2 Gs (%) CI-h ̂2(95%)
YLD 4.50 1.26 24.01 0.00 34.21 0.07 5.89 -0.06; 0.20
NF 197.31 89.17 947.14 16.58 1486.45 0.07 6.06 -0.06; 0.20
FW 30.98 31.89 - - 561.98 0.05 1.30  -0.14; 0.24
LGT 6.28 1.65 - - 25.07 0.19 2.22  0.01; 0.38
TVS 1.26 1.73 - - 13.45 0.08 0.73 -0.10; 0.26
PP 3.50 0.00 - - 19.87 0.15 2.24 -0.04; 0.35
PT 0.41 0.13 - - 1.04 0.26 -6.54 0.08; 0.44
TSS 0.28 0.00 - - 1.57 0.15 2.41 -0.04; 0.35

Yield (YLD), Number of Fruits (NF), Fruit Weight (FW), Fruit Longitudinal Diameter (LGT), Fruit Transverse Diameter (TVS), Pulp Percentage (PP), Peel Thickness (PT), and 

Total Soluble Solids (TSS). (h ̂2) is the point estimate of broad-sense heritability (h ̂2 = 
σ2̂

progeny

σ2̂
progeny+σ2̂

block+σ2̂
column+σ2̂

row+σ2̂
error

); (σ̂2error) is the estimate of residual variance; (σ2̂
block) 

is the estimate of variance due to the block factor; (σ2̂
column) is the estimate of variance due to the column factor; (σ̂2row) is the estimate of variance due to the row factor; 

σ2̂
progeny is the estimate of genetic variance; CI-h ̂2 is the approximation of the confidence interval for heritability by the delta method; and GS = 100. ( X ̅

30 − X ̅
G

X ̅
G

) is the selection 

gain relative to the overall mean (X ̅
G) and the mean of the 30 (thirty) first selected progenies (X ̅

30).

Table 4. Estimation of genetic parameters of 97 passion fruit progenies from the fourth cycle of recurrent selection- Bayes

Variable σ̂2progeny σ̂2block σ̂2row σ̂2column σ̂2error h ̂2 Gs (%) HPD-95%
NF 170.90 2593.00 1098.00 55.46 1533.00 0.05 6.06 0.00; 0.15
YLD 4.75 1332.00 32.68 0.93 34.51 0.04 5.67 0.00; 0.13
FW 51.89 2847.00 44.91 26.10 515.50 0.06 1.99 0.00; 0.18
TVS 6.39 986.30 1.14 3.08 23.37 0.11 2.22 0.00; 0.28
LGT 1.35 13.42 - - 13.61 0.04 0.72 0.00; 0.15
PP 3.26 11.50 1.82 0.72 19.27 0.08 1.96 0.00; 0.24
PT 0.41 682.00 - - 1.08 0.09 -6.27 0.00; 0.30
TSS 0.26 1034.00 - - 1.63 0.07 2.04 0.00; 0.24

Number of Fruits (NF), Yield (YLD), Fruit Weight (FW), Fruit Transverse Diameter (TVS), Fruit Longitudinal Diameter (LGT), Pulp Percentage (PP), Peel Thickness (PT), and 
Total Soluble Solids (TSS). (h ̂2) is the estimate of the heritability obtained by the mean of the posterior distribution; (σ̂2error) is the estimate of residual variance; (σ̂2block) is 
the estimate of variance due to the block factor; (σ̂2column) is the estimate of variance due to the column factor; and (σ̂2row) is the estimate of variance due to the row factor.
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For example, by comparing the estimates between the frequentist model (which is relatively simpler and less costly) 
against the Bayesian model, one can see that the highest posterior density (HPD) values had smaller amplitudes when 
compared to the confidence interval (CI) (Tables 3 and 4). This occurs due to the parametric space assumed by prior II. 
However, it is important to note that the selection gain estimates were very similar to those of the frequentist method, 
so it is the responsibility of the breeder to choose which parameters are of interest to him in order to choose which 
model will provide an approximate estimate, and a more accurate one.

Under the mixed-model approach, heritability estimates ranged from 0.05 to 0.26, with PT showing the highest 
value (0.26). Using the same experimental design, Silva et al. (2016) obtained divergent estimates in full-sib families 
of the same crop, describing values that ranged from 0.14 to 0.53. Selection gain ranged from -6.54% to 6.06%, with 
the highest results achieved by NF and YLD (6.06% and 5.89%, respectively). Under the Bayesian approach, these 
heritability estimates ranged from 0.04 to 0.11 and selection gain from -6.27% to 6.06%. Overall, the magnitude of 
the heritability estimates did not coincide between the two estimation methods, but selection gain estimates were 

Table 5. Ranking of the first 30 passion fruit progenies from full-sibs of the fourth cycle of recurrent selection via mixed models (REML/
BLUP, the first trait) and Bayesian models (the second trait)

N NF NF YLD YLD FW FW LGT LGT TVS TVS PP PP PT PT TSS TSS
1 23 23 67 67 89 89 32 32 32 32 49 49 45 45 90 90
2 9 9 85 85 40 99 40 59 14 14 41 41 49 49 45 45
3 35 35 23 23 99 60 90 90 99 99 44 45 31 31 72 72
4 71 71 90 90 60 6 59 40 89 89 72 72 41 41 3 3
5 90 90 9 9 6 40 99 89 92 92 23 23 100 100 11 11
6 67 67 71 71 32 32 72 6 98 98 45 44 92 92 34 34
7 70 70 40 4 72 72 6 72 72 72 31 89 9 9 21 21
8 88 88 4 40 92 14 89 38 40 40 51 51 29 29 55 55
9 49 49 35 35 59 92 76 95 76 76 38 30 47 47 19 19
10 48 48 48 46 58 59 95 99 95 95 43 31 73 73 41 41
11 85 85 46 48 14 4 33 21 3 3 30 38 40 40 31 31
12 12 46 88 19 4 58 21 14 6 6 59 27 3 3 100 100
13 46 19 58 58 16 39 31 76 51 51 92 92 23 23 98 98
14 19 63 19 88 85 3 38 39 81 81 61 91 91 91 92 92
15 63 12 62 62 41 41 58 4 85 85 9 61 69 69 27 27
16 65 65 25 25 3 85 39 98 41 41 89 84 1 1 37 37
17 40 91 49 63 39 16 61 8 59 59 91 59 59 59 52 52
18 91 40 65 65 35 48 4 58 96 96 27 43 80 80 68 68
19 55 55 63 49 90 21 3 9 25 25 98 54 30 30 64 64
20 28 28 12 28 48 50 14 3 69 16 100 52 12 12 18 18
21 4 4 89 89 98 100 98 65 16 69 54 9 68 68 43 43
22 20 52 28 27 50 98 8 31 60 60 4 98 87 87 53 53
23 25 25 27 52 100 76 9 33 4 4 84 11 22 22 89 89
24 52 58 22 12 21 90 88 61 58 58 47 4 84 84 96 96
25 58 20 3 22 76 35 65 66 83 83 11 100 24 24 33 33
26 62 62 52 70 52 52 34 23 66 22 55 93 98 79 78 78
27 15 15 39 3 64 64 92 88 22 66 93 24 79 98 87 87
28 8 8 70 39 83 83 50 85 33 33 24 57 61 61 35 35
29 72 93 6 6 96 56 23 50 100 100 57 20 89 89 47 47
30 22 68 55 55 56 96 75 92 39 39 58 47 70 70 51 51
X ̅

G 116.4 116.4 18.4 18.4 158.6 159.2 81.0 81.0 72.2 72.3 46.8 46.9 7.3 7.3 13.4 13.4

X ̅
30 123.5 123.5 19.4 19.5 160.6 162.3 82.8 82.8 72.8 72.8 47.9 47.8 7.8 6.9 13.7 13.7

Number of Fruits (NF), Yield (YLD), Fruit Weight (FW), Fruit Longitudinal Diameter (LGT), Fruit Transverse Diameter (TVS), Pulp Percentage (PP), Peel Thickness (PT), and 
Total Soluble Solids (TSS). Progeny ranking formed from the mean value added to the predicted genotypic value (u + g); X ̅

G is the overall mean and X ̅
30 is the mean of the 

first 30 (thirty) selected progenies.
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close. The heritability estimates found for all traits are much lower than those described in the literature, which 
may be due to high environmental/experimental management influence or the polygenic nature of these variables. 
Heritability estimates were also lower than those reported by Viana et al. (2004), which is explained by the fact that 
this is the fourth cycle of recurrent selection, when the variables are homogeneous for the desirable traits.

The analysis of the ranking of the first 30 selected progenies, according to Table 5, reveals consistency between 
the two winning methods. Differences in the selection of these progenies were not compatible. The coincidence rate 
between the progenies selected by the two methods ranged from 88.33% to 100%. When analyzing the 30 best progenies 
selected for each characteristic, progenies 89, 98, 92, 72, 58, 40, 4, 3, 100, 90, 59, 41, 23 and 9 form a set that shows 
a high genetic probability of being the best progenies in all evaluated traits. It is noteworthy that these results differ 
from those found by Silva et al. (2020) in guava crop, for which distinct sets of individuals were selected through the 
methodologies employed.

To evaluate the accuracy, reliability, and efficiency of the models, the study included the investigation of some 
statistics (metrics) that provide information on the selective and predictive accuracies of the models by the 5-fold 
method. Overall, the predictive ability (PA) and predictive efficiency (RMSE) metrics for each variable (Table 6) have 
practically the same magnitude by the two models, i.e., both have the same generalization ability. In the validation and 
training stages of cross-validation (5-fold), the models exhibited similar predictive ability for all variables, except FW PP, 
and TSS. The predictive ability of the models for the variables ranged from 6% to 40%.

CONCLUSION

From the standpoint of the frequentist and Bayesian models, the post-hoc blocking Row-Col technique captured 
the existing variability for the variables yield and number of fruits, for which it had a direct impact on experimental 
precision.

The tested models select practically the same individuals, which shows that the two estimation methods are equivalent 
for this structure of observations.

Overall, the parameterization of priors reduced the root mean square error, increased the correlation between 
observed and predicted values, and decreased the deviance information criterion for the models, compared with prior 
distribution I (Inverse Gamma).

Table 6. Estimates of metrics obtained by the models in 5-fold cross-validation

Variable Model PAtraining PAvalidation RMSEtraining RMSEvalidation

Number of fruits
Mixed 0.74 0.39 33.44 44.43

Bayesian 0.75 0.39 33.74 44.23

Yield
Mixed 0.74 0.40 5.15 6.69

Bayesian 0.75 0.40 5.07 6.68

Fruit weight
Mixed 0.70 0.07 20.43 24.85

Bayesian 0.71 0.13 20.21 24.52

FLD/Length
Mixed 0.83 0.26 4.05 5.46

Bayesian 0.82 0.26 4.10 5.46

FTD/Diameter
Mixed 0.51 0.20 3.50 3.82

Bayesian 0.57 0.22 3.44 3.81

Peel thickness
Mixed 0.81 0.31 0.89 1.18

Bayesian 0.78 0.31 0.92 1.18

Pulp percentage
Mixed 0.78 0.10 3.75 4.99

Bayesian 0.79 0.06 3.72 5.01

Total soluble solids
Mixed 0.79 0.14 1.19 1.35

Bayesian 0.78 0.12 1.19 1.34
Predictive ability of training (PAtraining); Predictive ability of validation (PAvalidation); Root means square error of training (RMSEtraining); Root mean square error of validation 
(RMSEvalidation).
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