Crop Breeding and Applied Biotechnology 6: 303-309, 2006 Brazilian Society of Plant Breeding. Printed in Brazil

Maternal effect associated to cooking quality of common bean

Silvia Regina Rodrigues de Paula Ribeiro^{1*}, Magno Antônio Patto Ramalho¹, and Ângela de Fátima Barbosa Abreu²

Received 29 November 2005

Accepted 26 September 2006

ABSTRACT - The cooking time of common bean grains is one of the determinant factors for the consumer acceptance of a cultivar. Since in the segregating populations tegument and cotyledons are in different generations, one needs to know which one of these structures influences the cooking quality to define breeding objectives. We evaluated the parentals, the F_1 , F_2 , and F_3 generations and the reciprocals of the crosses CI-107 x Carioca-80, CI-107 x Amarelinho and CI-107 x G2333. A maternal effect was stated in the trait expression since bean cooking quality was mainly determined by the tegument constitution. The inferences derived from genetic and phenotypic parameters were not expressively affected by storing, whereas the cooking time increased with higher grain ages.

Key words: Common bean, genetic improvement, cooking time.

INTRODUCTION

Common bean (*Phaseolus vulgaris* L.) is attractive for consumption from the nutritional standpoint due to components and substances that make it a remarkable source of proteins, fibers, vitamins, carbohydrates, and minerals. Moreover, it has phenolic compounds with antioxidant action that can reduce disease incidence (Beninger and Hosfield 2003). This legume is part of the daily diet of the Brazilian population, in longstanding cultivation in most Brazilian states, practically all year round (CONAB 2004).

In common bean improvement programs, in some moment lines are inevitably evaluated for cooking time, which is one of the factors of utmost importance for the consumer acceptance of a cultivar. The trait has been studied for some time. Genetic variation between the lines was stated (Elia et al. 1997, Jacinto-Hernandez et al. 2003). The effects of environmental factors such as drying and storage time were also observed (Carbonell et al. 2003, Boros and Wawer 2004).

Several factors have been investigated to obtain information on the difference in the cooking time of some lines (Elia et al. 1997, Costa et al. 2001, Jacinto-Hernandez et al. 2003). There are however still doubts about whether the trait depends only on properties associated to the tegument and/or the cotyledons. This information is fundamental in improvement programs since the two are in different generations. The reason is that tegument is maternal tissue and the cotyledons are a product of fecundation and therefore have xenia effect (Ramalho et al. 2004).

The present study was conducted to verify which of the grain constituents has an influence on cooking time, to compile information on the genetic control of

¹ Departamento de Biologia, Universidade Federal de Lavras (UFLA), 37.200-000, Lavras, MG, Brasil. *E-mail: silviarrp@yahoo.com.br
² EMBRAPA Arroz e Feijão, UFLA

this trait and to find out if storage time has an effect on how grain constituents influence the cooking quality.

MATERIAL AND METHODS

Seeds of four common bean lines of the germplasm bank of the Universidade Federal de Lavras were used, previously evaluated for water absorption and cooking time (Costa et al. 2001). Line CI-107 and Carioca-80 both have beige, opaque, carioca type grains with brown stripes of average size, and growth habit type III. They differ regarding the cooking time, which is shorter in the former and longer in the latter, besides a yellow halo on Carioca-80 grains. Line Amarelinho produces small shiny yellow grains, with growth habit type III and a longer cooking time. Line G2333 has shiny red grains of average size, growth habit type IV and a longer cooking time. All four have a 90-day cycle and prostrate habit.

In a methodology similar to the one presented by Ramalho et al. (1993), the following biparental crosses were performed: CI-107 (P₁) x Carioca-80 (P₂), CI-107 (P₁) x Amarelinho (P₃), CI-107 (P₁) x G2333 (P₄) and the respective reciprocals. The F₁ seeds and respective reciprocals were sown in a greenhouse to obtain the F₂ generation. Simultaneously the F₁ seeds were obtained again to get F₁ and F₂ seeds of the same age. In the following generation, part of the F₂ seeds of each cross were sown to develop the F₃ generation under field conditions. The process was repeated to have grains of the same age available.

At all post-harvest stages the grains were sundried to a moisture of approximately 13%. Then they were wrapped in paper bags and stored under at room temperature until the evaluation. The evaluation periods and the generations involved in the cooking test are presented in Table 1, in 10 replications for each generation in the evaluation periods.

For the evaluation of the cooking quality each grain was placed separately in a recipient with distilled water and after 18 hours cooked in a JAB-77 experimental cooker, small type, to measure the cooking time, according to a methodology adapted from Proctor and Watts (1987). The cooker has 25 spikes, one per grain. The cooker, equipped with the grains, was placed in a beaker with 1,000 ml boiling water that was kept hot on a hotplate with a constant surface temperature of

300 °C. The time from the beginning of the cooking process until the moment when the spike pierced each bean grain was considered the cooking time per grain.

The cooking time of each grain, in minutes, was subjected to the analysis of variance per evaluation period and then to a joint analysis of the periods for each cross and generation. With the underlying data means obtained in each cross and generation type, the mean components were estimated using the following model that was based on the generation of the cotyledons.

Y = m + a + d + e, where:

Y: mean cooking time of the population in each period; m: mean of the completely contrasting homozygous parents

a: evaluation of the maternal effect (F_1 generation) and contribution of the homozygous loci (F_2 and F_3 generations)

d: contribution of the heterozygous loci (dominance effect)

e: effect of the evaluation period

RESULTS AND DISCUSSION

Foremost, it must be emphasized that the cotyledons in a seed are products of fecundation, whereas the tegument is maternal tissue. Thus, these tissues are in different generations. To prevent any doubts about the interpretation of the identification of the generations in the present study, the generation of the embrionary axis or cotyledons was used as reference. Each generation was represented by two numbers; the first identified the generation itself and the second the parent used as female.

To conduct a study of this nature, particularly since the F_2 generation is involved, it is necessary to evaluate the grains individually. This fact contributed to a high coefficient of variation (CV) which varied from 24.9 to 34.6%. In the literature no data were found of evaluations of individual cooking of common bean grains. There are, however, countless results of evaluations involving lines or families, using mean data of different grains. In this case, the CV estimate is more suitable (Elia et al. 1997, Costa et al. 2001).

As expected the mean results (Table 2) showed that after a longer storage period the cooking time was longer. The periods x populations interaction was

Evaluations ²	Generations	Nr. of individuals	Generations	Nr. of individuals
	$P_1 - CI - 107$	5		
	P_2 – Carioca-80	4		
	P_3 – Amarelinho	2		
	P_4^{-} -G2333	2		
	$F_{11}^{-1} - Q CI - 107 x Carioca - 80$	2		
1ª	$F_{12} - Q$ Carioca-80 x \mathcal{F} CI-107	2		
	F ₁₁ - ♀ CI-107 x ♂ Amarelinho	2		
	$F_{13} - Q$ Amarelinho x \mathcal{F} CI-107	2		
	F ₁₁ - Q CI-107 x A G2333	2		
	$F_{14} - Q = G2333 \text{ x}$ CI-107	2		
	Total	25		
2ª	P ₁ - CI-107	4	$P_1 - CI - 107$	4
	P_2^{1} - Carioca-80	4	P_2^{1} – Carioca-80	4
	$F_{12} - Q$ Carioca-80 x \mathcal{F} CI-107	4	F_{11}^{2} - Q CI-107 x \mathcal{C} Carioca-80	4
	$F_{22}^{12} - Q$ Carioca-80 x $(3)^{\circ}$ CI-107	13	$F_{21} - Q CI - 107 x $ Carioca-80	13
	Total	25	Total	25
2ª	$P_1 - CI - 107$	4	P ₁ -CI-107	4
	$P_3^{'}$ – Amarelinho	4	$P_3^{'}$ – Amarelinho	4
	$F_{13} - Q$ Amarelinho x $\stackrel{\circ}{\to}$ CI-107	4	$F_{11} \bigcirc CI-107 \times \mathcal{F}$ Amarelinho	4
	F_{23}^{13} - $\frac{1}{2}$ Amarelinho x $\stackrel{\sim}{\rightarrow}$ CI-107	13	$F_{21} \stackrel{\circ}{\downarrow} CI-107 \times \stackrel{\circ}{\land} Amarelinho$	13
	Total	25	Total	25
2ª	P ₁ - CI-107	4	$P_1 - CI - 107$	4
	$P_4^{-}-G2333$	4	$P_4^{-}-G2333$	4
	F ₁₄ -♀ G2333 x ♂ CI-107	4	F ₁₁ - ♀ CI-107 х ♂ G2333	4
	F ₂₄ -♀ G2333 x ♂ CI-107	13	$F_{21} - \dot{Q} CI - 107 x \overset{?}{O} G2333$	13
	Total	25	Total	25
3ª	P ₁ - CI-107		$P_1 - CI - 107$	2
	$P_2^{'}$ -Carioca-80	2 2	$P_2 - Carioca - 80$	2
	F ₂₂ - Q Carioca-80 x A CI-107	10	\overline{F}_{21} - \bigcirc CI-107 x $\stackrel{\frown}{}$ Carioca-80	10
	F ₃₂ - Q Carioca-80 x A CI-107	11	$F_{31} - QCI-107 \times Carioca-80$	11
	Total	25	Total	25
3ª	P ₁ -CI-107	2		
	$P_3 - Amarelinho$	2		
	$F_{23} - Q$ Amarelinho x \bigcirc CI-107	10		
	F₃₃ -♀ Amarelinho x ♂ CI-107	11		
	Total	25		
3ª	P ₁ - CI-107	2		
	P ₄ -G2333	2		
	F ₂₄ -♀ G2333 x ♂ CI-107	10		
	F ₃₄ -♀ G2333 x ♂ CI-107	11		
	Total	25		

Table 1.Number of grains used in the evaluation of the cooking time of the cross between CI-107 (P_1), Carioca-80 (P_2), Amarelinho (P_3) and G2333 (P_4) and the respective reciprocals in the $F_{1,1}$, F_2 and F_3 generations in three evaluation periods

 $\rm F_{11}$ – the first number refers to the generation and the second to the parent used as female 1^{st} Evaluation in January 2003 2^{nd} Evaluation in August 2003

3rd Evaluation in February 2004

SRRP Ribeiro et al.

Table 2. Mean cooking time, in minutes, obtained in the cross of CI-107 x Carioca-80. CI-107 x Amarelinho, CI-107 x G2333 and the respective reciprocals in the F_1 , F_2 , and F_3 generations, in three evaluation periods. Period A, evaluated 65 days after harvest, in January 2003; period B, 96 days after harvest, in August 2003; and period C evaluated 112 days after harvest in February 2004

Populations	Period A	Period B	Period C
P ₁ -CI-107	26	44	38
P ₂ -Carioca-80	39	56	53
$F_{11} \stackrel{1}{\hookrightarrow} CI-107 \times \stackrel{1}{\mathcal{S}} Carioca-80$	32	35	-
F ₁₂ - Q Carioca-80 x & CI-107	35	52	-
$F_{21} - QCI-107 \times Carioca-80$	-	54	47
$F_{22} - \dot{Q}$ Carioca-80 x $\overset{\circ}{\mathcal{S}}$ CI-107	-	52	48
$F_{31} - \bigcirc CI - 107 \times \textcircled{Carioca-80}$	-	-	51
F ₃₂ - Q Carioca-80 x & CI-107	-	-	56
P ₁ -CI-107	26	34	36
P ₃ -Amarelinho	33	50	47
$F_{11} - \bigcirc CI - 107 \text{ x} \bigcirc Amarelinho$	28	34	-
$F_{13} - Q$ Amarelinho x \mathcal{F} CI-107	46	41	-
$F_{21} - \bigcirc CI - 107 \text{ x} \textcircled{3}$ Amarelinho	-	40	-
$F_{23} - \bigcirc$ Amarelinho x \bigcirc CI-107	-	57	44
$F_{33} - Q$ Amarelinho x $\stackrel{\frown}{\rightarrow}$ CI-107	-	-	50
P ₁ -CI-107	24	35	34
P ₄ -G2333	31	51	52
F ₁₁ - ♀ CI-107 x ♂ G2333	25	37	-
F ₁₄ - Q G2333 x A CI-107	33	51	-
$F_{21} - Q CI - 107 x = 0.000 G2333$	-	31	-
F ₂₄ - Q G2333 x A CI-107	-	42	54
F ₃₄ - Q G2333 x Å CI-107	-	-	54

 ${}^{1}F_{11}$ - the first number refers to the generation and the second to the female parent

significant. Note for instance, that in the cross CI- 107 x Carioca-80 in the F_1 population cooking time was very similar in the two periods while for the parents and F_2 the difference was more expressive. These results agree with several other reports in the literature (Carbonell et al. 2003, Boros and Wawer 2004). One of the reasons is that the lignin content in stored beans is higher that in young beans. Estimates evidenced that it varies from 8.4 g 100g⁻¹ in recently harvested beans to 13 g 100g⁻¹ dry matter in stored common bean.

Furthermore, divergence was observed between the parents (Table 2), which is fundamental to test the formulated hypotheses. Line CI-107 is cooked faster and the lines Amarelinho, Carioca-80 and G2333 cook slower. Our results confirm previous evaluations involving these lines (Costa et al. 2001). The performance of the parents in relation to the F_1 and reciprocal generation is noteworthy. In most situations the mean of the F_1 generation was similar to that of the parent used as female (Tables 2 and 3). Preliminarily, the inference was drawn that cooking time does not depend on the cotyledons, i.e., depends on the tegument only.

The estimates of the mean components involving the parents and F_1 generations of the three crosses are presented in Table 5. In this case, component <u>a</u> expressed the difference in the reciprocal effects. The estimate of <u>a</u> was significant in all cases. Interestingly the estimate of <u>d</u>, on the contrary, was not significant, confirming that cooking time is predominantly determined by the tegument constitution. To confirm these previous observations, a similar procedure of analysis was adopted for the F_2 generations (means

Table 3. Estimate of the probability (P) obtained in the F test, for a comparison of the contrasts of the crosses of the parents CI-107 (P₁) and Carioca-80 (P₂), CI-107 (P₁) and Amarelinho (P₃) and CI-107 (P₁) and G2333 (P₄) and the reciprocals in the F₁ and F₂ generation, in the two evaluated periods. Period A, evaluated 65 days after harvest, in January 2003; and period B, 96 days after harvest, in August 2003

Contrasts	Period A	Period B
P ₁ vs P ₂	0.0001	0.1306
$P_1 vs F_{11}^{-1}$	0.0648	0.2396
P_2 vs F_{12}	0.2906	0.8862
F_{11} vs F_{12}	0.2347	0.0001
P_1 vs F_{21}	-	0.1750
P_1 vs F_{22}	-	0.2567
P_2 vs F_{21}	-	0.7601
P_2 vs F_{22}	-	0.5788
F_{21} vs F_{22}	-	0.5742
P_1 vs P_3	0.0188	0.0051
P_1 vs F_{11}	0.5086	0.9287
P_3 vs F_{13}	0.0001	0.0718
F_{11} vs F_{13}	0.0001	0.0210
P_1 vs F_{21}	-	0.0082
P_1 vs F_{23}	-	0.0001
P_3 vs F_{21}	-	0.7001
P_3 vs F_{23}	-	0.3223
F_{21} vs F_{23}	-	0.0011
P_1 vs P_4	0.0519	0.0001
P_1 vs F_{11}	0.5513	0.6425
P_4 vs F_{14}	0.6237	0.9568
F_{11} vs F_{14}	0.0015	0.0001
P_1 vs F_{21}	-	0.0034
P_1 vs F_{24}	-	0.0013
P_4 vs F_{21}	-	0.5843
P ₄ vs F ₂₄	-	0.8314
F_{21} vs F_{24}	-	0.3702

 1 F₁₁ – the first number refers to the generation and the second to the female parent

presented in Table 2 and significance of contrasts in Table 3). The most expressive result is the mean performance of the F_{2i} and F_{2j} generations, which was very similar in the two periods and the mean of the periods. The estimates of the different contrasts reinforced this observation. The contrast F_{2i} vs F_{2j} was not significant in any of the conditions except for cross CI-107 (P₁) x Amarelinho (P₃).

The estimates of the mean components involving the F_2 generation are presented in Table 5. The model considered cooking time as dependent of

the tegument constitution and that the F_2 generation therefore has a tegument constitution due to the genotype of the F_1 plant. The results obtained are compatible with this observation, especially since the adopted model explained nearly all variation, as the high R^2 estimates show. Furthermore, dominance was inferred in the trait expression (Table 5).

In general, the mean results of the analyses of the parents and F_3 generation for the three crosses are in line with the previous results (Table 2). Most of the contrasts involving the generations were significant

Table 4. Estimate of the probability (P) obtained in the F test, for comparison of the contrasts of the crosses of the parents CI-107 (P₁) x Carioca-80 (P₂), CI-107 (P₁) x Amarelinho (P₃) and CI-107 (P₁) x G2333 (P₄) and the reciprocals in the F₂ and F₃ generations in the evaluation period C, 112 days after harvest

Contrasts Period	C
P ₁ vs P ₂ 0.0003	
$P_1 vs F_{21}^{ll} 0.0234$	
$P_1 vs F_{22} 0.0088$	
$P_1 VS F_{31} = 0.0003$	
$P_1 \text{ vs } F_{32} = 0.0001$	
$P_2 \text{ vs } F_{21} = 0.0437$	
P_{2} vs F_{22} 0.1059	
$P_2 \text{ vs } F_{31} = 0.4598$	
$P_2 vs F_{22} = 0.3035$	
F_{21} vs F_{22} 0.6237	
F_{21} vs F_{31} 0.0616	
$F_{21} VS F_{22} 0.0001$	
F_{22} vs F_{31} 0.1861	
F_{22} vs F_{22} 0.000/	
F_{31} vs F_{32} 0.0082	
$P_1 VS P_3 = 0.1346$	
$P_1 vs F_{22} 0.1848$	
$P_1 vs F_{22} = 0.0242$	
$P_3 VS F_{23} = 0.3044$	
$P_{2} VS F_{22} = 0.5655$	
F_{23} VS F_{33} 0.0190	
$P_1 VS P_4 = 0.0102$	
$P_1 vs F_{24} 0.0013$	
$P_1 vs F_{34} 0.0006$	
P_{4} vs F_{24} 0.59/2	
P_{4} vs F_{24} 0.5018	
F_{24}^{4} vs F_{34}^{54} 0.8961	

 ${\rm F}_{\rm 11}$ – the first number refers to the generation and the second to the female parent

(Table 4), evidencing the occurrence of dominance. Since dominance occurred in the sense of a longer cooking time, it was expected that the mean of the F_3 generation would be lower than of F_2 . The opposite was true. The reason is probably due to sampling problems, namely in the F_3 generation. These results are not in line with the previously reported. It is however noteworthy that the estimates of the genetic additive component (a) and especially of dominance (d), involving one of the crosses (CI-107 (P₁) and Carioca-80 (P₂) were not significant (Table 5). This result allows the conclusion that the inbreeding depression cited in the comparison of the F_2 and F_3 generations can be attributed to sampling problems in these generations, as mentioned above.

The results obtained with the three crosses allowed the conclusion that cooking time is predominantly a function of the tegument. The reason is that the F_1 seed performance for cooking time was always the same as of the female parent. The performance of the F₂ and F₃ generations as well as the results for the estimates of the mean components, especially the contribution of the loci in heterozygosis, reinforced this observation. Note that when only grains of the F_1 generation and parents were used, the contribution of this component was zero in the trait expression. However, when the F_2 generation of the embryo and F_1 of the tegument was involved, this component was different from zero. The trait expression depended on the genetic constitution of the tegument and is therefore a maternal effect.

ACKNOWLEDGEMENTS

The CNPq granted a scholarship.

Efeito materno associado à capacidade de cozimento do feijão

RESUMO - O tempo de cozimento dos grãos de feijão é um dos principais fatores envolvidos com a adoção de uma cultivar de feijão. Como o tegumento e os cotilédones estão em gerações diferentes quando da condução de populações segregantes, é indispensável identificar qual dessas estruturas afeta a cozimento e assim orientar os trabalhos de melhoramento. Foram avaliados os genitores, as gerações F_1 , F_2 , F_3 e seus recíprocos dos cruzamentos: CI-107 x Carioca-80, CI-107 x Amarelinho e CI-107 x G2333 e seus respectivos recíprocos. Constatou-se efeito materno na expressão do caráter, isso porque o tegumento foi o principal constituinte do grão de feijão responsável pelo cozimento. As inferências obtidas por meio dos parâmetros genéticos e fenotípicos não sofreram alterações expressivas com o decorrer do armazenamento, embora o tempo de cozimento incrementasse com a idade dos grãos.

Palavras-chave: Feijão, melhoramento genético, tempo de cozimento.

Table 5. Estimate of the mean components for cooking time in minutes, of the cross of the lines CI-107 (P_1) x Carioca-80 (P_2) in the F_1 , F_2 and F_3 generations in the three evaluation periods and of the crosses of CI-107 (P_1) x Amarelinho (P_3) and CI-107 (P_1) x G2333 (P_4) in the evaluation period of the reciprocals

Components	Parents. F ₁₁	Р	Parents. F ₂₁	Р	Parents. F ₃₁	Р
	and \mathbf{F}_{12}^{1}		and F ₂₂		and \mathbf{F}_{32}	
m	32.77	0.0002	50.68	0.0000	48.69	0.0009
a	4.96	0.0339	7.38	0.0002	8.77	0.1252
d	0.87	0.8005	2.14	0.0366	1.45	0.8150
e	11.52	0.0379	-5.26	0.0022	-	-
	R ² =0.9926		R ² =0.9998		R ² =0.9943	
Components	Parents. F ₁₁	Р	Parents. F ₂₁	Р		
	and F ₁₃		and F ₂₃			
m	31.75	0.0003	42.00	0.1119		
a	5.44	0.0288	8.00	0.4779		
d	2.26	0.4942	10.90	0.4289		
e	5.74	0.1289	-	-		
	R ² =0.9921		R ² =0.9943			
Components	Parents. F ₁₁	Р	Parents. F ₂₁			
	and \mathbf{F}_{14}		and F ₂₄			
m	26.79	0.0000	43.00	0.1444		
a	5.28	0.0035	8.00	0.0772		
d	3.04	0.1509	6.51	0.1061		
e	14.26	0.0011	-	-		
	R ² =0.9977		R ² =0.9999			

¹F₁₁ - the first number refers to the generation and the second to the female parent

REFERENCES

- Beninger CW and Hosfield GL (2003) Antioxidant Activity of Extracts, Condensed Tannin Fractions, and Pure Flavonoids from *Phaseolus vulgaris* L. Seed Coat Color Genotypes. Journal Agricultural and Food Chemistry 51: 7879-7883.
- Boros L and Wawer A (2004) Genotypic and seasonal effects on seed parameters and cooking time in dry edible bean. Bean Improvement Cooperative 47: 213-214.
- Carbonell SAM, Carvalho CRL and Pereira VR (2003) Qualidade tecnológica de grãos de genótipos feijoeiro cultivados em diferentes ambientes. **Bragantia 62**: 369-379.
- CONAB (2004) Indicadores da Agropecuária. Companhia Nacional de Abastecimento 9: 8-9.
- Costa GR, Ramalho MAP and Abreu AFB (2001) Variabilidade para absorção de água nos grãos de feijão do germoplasma da UFLA. Ciência e Agrotecnologia 25: 1017-1021.
- Elia FM, Hosfield GL and Uebersax MA (1997) Genetics analysis and interrelationships between traits for cooking time, water absorption, and protein and tannin content of Andean dry beans. Journal American Society Horticultural Science 122: 512-518.

- Jacinto-Hernandez C, Azpiroz-Rivero S, Acosta-Gallegos, Hernandez-Sanchez H and Bernal-Lugo I (2003) Genetic Analysis and Random Amplified Polymorphic DNA Markers Associated with Cooking Time in Common Bean. Crop Science 43: 329-332.
- Proctor JR and Watts BM (1987) Development of a Modified Mattson Bean Cooker Procedure Based on Sensory Panel Cookability Evaluation. Canadian Institute of Food Science and Technology 20: 9-14.
- Ramalho MAP, Santos JB and Pinto CBP (2004) Genética na Agropecuária. Editora UFLA, Lavras, ??????
- Ramalho MAP, Santos JB and Zimmermann MJO (1993) Genética quantitativa em plantas autógamas: aplicações ao melhoramento do feijoeiro. Editora UFG, Goiânia.