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ABSTRACT - The grain yield of 27 soybean lines was evaluated at three locations (Anhembi, Areão and Esalq) in Piracicaba, State
of São Paulo, Brazil, during four crop years to study the effect of environment (E) on the adaptability and stability of the lines (G)
using additive main effects and multiplicative interaction analysis (AMMI). Effects of the G, E, and GE interaction were found to be
significant and accounted for 51, 12, and 36% of the variation, respectively. The first and only significant interaction principal
component axis (IPCA1) accounted for 26% of the sum of squares due to original GE interaction. This concentrated the largest
proportion of the pattern of GE interaction. Environments associated with Anhembi and Esalq proved more favorable, while Areão
contributed negatively to the grain yield. However, Anhembi and Areão were more predictable for the crop years. USP 93-5082 and
USP 93-5243 lines combined high adaptability and stability.

Key words: Glycine max, GE interaction, predictability, AMMI model.

INTRODUCTION

Soybean is a species of great economical interest owing to
the nutritional quality of its grain, given by the high protein
(40%) and oil (20%) content, as well as its high grain yield. In
Brazil, soybean is nowadays cultivated in a large range of
environments, from the high (southeast and southern regions)
to the low latitudes (Mid-West, northeast and northern regions).
In this sense, the selection of genotypes with high productivity
(adaptability) and adaptation ability to a wide range of
environments (stability) is a very important step in soybean
breeding programs (Rocha and Vello 1999).

Depending on the  genetic  base  and  unpredictable climatic

factors prevailing at the different sites and/or years, differential
responses are expected from the improved genotypes (G) tested
in different environments (E). These differential genotypic
responses to different environments are collectively called GE
interaction (Allard and Bradshaw 1964). A significant GE
interaction for a quantitative trait such as grain yield can seriously
limit the genetic gain under selection. The testing of selected
materials over sites and years to ensure a stability performance
over a range of environments is a universal practice. In a breeding
program, genotype x location interaction effects are of special
interest for identifying adaptation targets, adaptative traits and
test sites. These effects, generally having relatively low
repeatability over years, should be studied on a multiyear basis
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MATERIAL  AND METHODS

Twelve field experiments with soybean lines of
intermediate maturity cycle (128-135 days) were conducted at
three locations (Anhembi, Areão and ESALQ) in Piracicaba
county (22o 42’ lat S, 47o 39’ long W and altitude 543m asl),
state of São Paulo (SP), Brazil. The genotypes represents a
group of experimental lines developed by the Genetic Department
of the Escola de Agricultura “Luiz de Queiroz” (ESALQ),
Universidade de São Paulo (USP). The lines are product of
crossings among adapted parents (adapted cross) and exotic
with adapted parents (mixed cross). Additional descriptions of
the lines are presented in Table 1.

The Anhembi Experimental Station is located about 60 km
from the ESALQ headquarters, with a plain topography. The soil
type is a Typic Udifluvent (commonly found in Brazilian
savannahs called “cerrados”), dystrophic alluvial and medium-
sandy textured, whose acidity was neutralized by lime application;
Areão has a wavy topography and a podzolic red-yellow
dystrophic soil of medium-loamy texture; the area in ESALQ
headquarters has a hilly relief and a high fertile soil (Kandiudalfic
Eutrudox) with loamy texture. At the three sites, black oat (Avena
strigosa) had been cultivated in the previous year and was
incorporated into the soil by the end of the growing season.

in annual crops (Annicchiarico 1997).
Methodologies to analyze stability are based on the

principle of an existent GE interaction, but differ in the concepts
of stability they adopt and in statistical principles. The
ecovalence method (Wricke 1965) is based on the decomposition
of the GE interaction, on each genotype components. Joint linear
regression analysis (JRA) (Finlay and Wilkinson 1963, Eberhart
and Russel 1966, Verma et al. 1978, Silva and Barreto 1986) has
been a commonly used technique for studying phenotypic
adaptability and stability. A major criticism regarding JRA is
that, usually only a small part of the interaction is explained
regression. Under large environmental diversity JRA can fail. It
is important to know the conditions under which this might
happen (Crossa 1990).

The use of multivariate methods to study GE interaction
effects has been suggested to solve the problem with JRA, which
uses an additive linear model to analyze a multivariate case. The
re-introduction and elaboration of the additive main effects and
multiplicative interaction (AMMI) analysis by Zobel et al.
(1988) has increased the interest on the principal component
analysis (PCA) techniques to study GE interaction effects. The
AMMI model combines the additive analysis of variance for
main effects with the multiplicative PCA for the interaction
(i.e., the residual from the analysis of variance).

Gauch (1990) claimed that AMMI analysis always does
as well as, but frequently much better than JRA in the sum of
square (SS) recovery. Preliminary results (Zobel et al. 1988)
supported the hypothesis that IPCA1 in AMMI is superior to
JRA in accounting for the G x E sum of squares. It seems plausible
that trait stability estimated by AMMI could be more repeatable
than other stability statistics because AMMI is effective at
recovering even complex GE interaction patterns (Sneller et al.
1997). Recently, AMMI analysis has been applied to soybean
(Zobel et al. 1988, Gauch and Zobel 1990, Sneller and Dombeck
1995, Sneller et al. 1997, Ariyo 1998, Oliveira et al. 2003).

After fitting the genotype and environmental main effects
in the model, a crucial step in the analysis is the determination
of the amount of pattern (portion of GE interaction variation
representing real responses to genotypes and environments),
and noise (random variation non-pattern resulting from
microenvironments effects). Ideally, pattern is only included in
the selected AMMI model by retaining the statistically
significant GE interaction principal component axes (IPCA) in
its multiplicative term (Annicchiarico 1997). The optimum
number of IPCA to be retained in the model in order to obtain
the most accurate estimation for grain yield, can be determined
by two different assessments (referred to in literature as
‘predictive’ and ‘postdictive’) (Fox et al. 1997).

The predictive assessment subdivides the data into two
sets; the model data and the validation data. The former is used
to construct a model, whose predictive values are then compared

with the validation data, using, for example, the root mean square
predictive difference (RMSPD) between the validation data and
model predictions, including zero (AMMI0) to all possible N
(AMMIN) IPCA, in terms of predictive accuracy (Gauch and
Zobel 1988, Gauch 1992). According to Ortiz et al. (2001),
when only two replications by environment are available in the
trials, it was not possible to apply the cross-validation procedure.
The postdictive assessment refers to a different method that
uses an F-test to identify the significance of each IPCA. An
early F-test devised by Gollob (1968) for the assessment of
IPCA was very liberal in selecting more multiplicative terms
than the true model contained (Cornelius et al. 1992). Others F-
tests (F

GH2
 and F

R
) have been developed that allow a better

control of type-I error rates, presenting better robustness
(Cornelius 1993, Piepho 1995).

Objective of the present research was to evaluate the
magnitude of the genotype by environmental interaction and to
access the phenotypic adaptability and stability on grain yield
of experimental soybean lines with an intermediate maturity
cycle for different environments (location and year combination),
using the AMMI analysis.
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RESULTS AND DISCUSSION

The additive main effects and multiplicative interaction
analysis showed that environments, genotypes (G) and GE
interaction were highly significant (P < 0.01) and accounted for
41, 10 and 29% of the total sum of squares (SS), respectively
(Table 2).

The significance between environments and genotypes
indicated that these showed enough variability while the
significance of the magnitude of the GE interaction revealed
differential response of genotypes across environments. The
interaction was partitioned in eleven interaction principal
components axis (IPCA) along with their contribution to the
SS. It was not possible to adopt the criterion predictive by

The soybean genotypes were sown in November,
corresponding to summer crop, in four crop years (1996/97,
1997/98, 1998/99 and 1999/2000). An incomplete block design
with two complete replications of treatments was used, being
each block stratified in experimental units with four common
checks: ‘IAC-4’, ‘IAC-12’, ‘IAC-100’, and ‘Stwart’. Each plot
contained four five meter-long rows spaced 50cm apart. Grain
yield data obtained at the three locations in the four studied
years were used for the statistical analysis. The environments
consisted in the location and year combination, resulting in
twelve environments: Anhembi-1996/97 (AN96), Anhembi-
1997/98 (AN97), Anhembi-1998/99 (AN98), Anhembi-1999/
00 (AN99), Areão-1996/97 (AR96), Areão-1997/98 (AR97),
Areão-1998/99 (AR98), Areão-1999/2000, ESALQ-1996/97
(ES96), ESALQ-1997/98 (ES97), ESALQ-1998/99 (ES98) and
ESALQ-1999/2000 (ES99). The sowing dates were 11/20/96,
11/16/97, 11,17/98, 11/23/99 (Anhembi); 11/12/96, 11/13/97,
11/05/98, 11/30/99 (Areão); 11/06/96, 1/12/97, 11/05/98, 11/08/
99 (ESALQ).

Analysis of variance (ANOVA) was used to test the
differences among the lines (G), environments (E), as well as to
test the magnitude of the GE interaction. AMMI analysis was
performed by removing additive effects for genotypes and
environments using the analysis of variance procedure and then
fitting multiplicative effects for GE interaction by PCA. The
statistical analysis was performed by SAS software (SAS
Institute Inc 1997) according to the program elaborated by
Duarte and Vencovsky (1999). The AMMI model is

∑
=

ε+ρ+δγλ+++µ=
N

1n
ijijjkikkjiij egY

where Y
ij
 is the grain yield of the ith genotype in the jth

environment; µ is the grand mean; g
i
 and e

j
 are the effects of

genotype and environment deviations from the grand mean,
respectively; λ

k
 is the singular value of the PCA axis k; γ

ik
 and δ

jk

are, respectively, the genotypic and environmental elements of
singular vectors associated to λ

k
 of the matrix of interaction; N

is the number of principal components retained in the model: ρ
ij

is the GE interaction residual; and ε
ij 

is the mean error. The
interpretation was given by a graphic biplot analysis (Gabriel
1971) with the aid of a table containing the means predicted by
the model AMMI selected for each combination genotype and
environment.

AMMI generates a family of models. AMMI0 uses the
additive genotypic and environmental effects only to describe the
data matrix and thus ranks genotypes identically for each environment,
ignoring GE interaction. The second model, AMMI1, considers the
main effects as well as the IPCA1 to interpret the residual matrix.
AMMI2 considers the main effects plus two axes, IPCA1 and IPCA2.
The higher order multiplicative components that are not significant
can be ignored, resulting in a ‘reduced’ model (Fox et al. 1997).

Table 1. Genealogies of 27 experimental soybean lines

Lines

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

L16

L17

L18

L19

L20

L21

L22

L23

L24

L25

L26

L27

USP Number

93-2258

93-2266

93-2514

93-2530

93-2643

93-2722

93-2725

93-2753

93-2802

93-2825

93-2870

93-5082

93-5243

93-5423

93-5539

93-5544

93-5549

93-5552

93-5582

93-5585

93-5586

93-5597

93-5690

93-5692

93-5843

93-5860

93-5884

Genealogies

Bossier x IAC-121

Bossier x IAC-11

Viçoja x FT 81-27061

IAC-10 x IAC-121

IAC-10 x FT 81-27061

IAC-12 x GO 81-11.6461

IAC-12 x GO 81-11.6461

IAC-12 x SOC 81-2281

IAC-1 x GO 81-11.6461

IAC-1 x FT 81-27061

BR-1-Fosca x FT 81-27061

GO 81-11.646 x SOC 81-2281

FT 81-2706 x PI 3716102

SOC 81-76 x Foster2

Paranagoiana x Jackson-40282

Paranagoiana x Jackson-40282

Jackson-4028 x FT 81-21292

Jackson-4028 x FT 81-21292

Cobb x BR-82

Cobb x BR-82

Cobb x BR-82

Cobb x BR-82

Bienville x UFV-Araguaia1

Foster x FT 79-34082

BR 80-15725-B x Planalto1

BR 80-15725-B x Planalto1

Planalto x GO 81-11.0941

1adapted cross (adapted parent x adapted parent)
2mixed cross (adapted parent x exotic parent)

Order
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cross-validation for the selection of the AMMI model because
there were only two replications by environment. The criterion
of postdictive success for AMMI using all the data (both
replications) and F

R
-test proposed by Cornelius (1993) and

Piepho (1995) indicated the inclusion of the IPCA1 and the
selection of the AMMI1 model because its residue was not
significant at the probability level 0.01 (Table 2).

IPCA1 explained 26% of the G x E sum of squares. This
value is smaller than that obtained by Zobel et al. (1988), Gauch
and Zobel (1990), Sneller et al. (1997), Ariyo (1998) and Oliveira
et al. (2003), who found 71%, 70%, 47%, 86%, and 36%,
respectively. However, it was larger than the value obtained by
Sneller and Dombek (1995), where the IPCA1 explained 23% of
the total GE interaction SS.

Although the variation for IPCA1 was slow in the present
work, it is very important because it represents the significant
portion of the interaction pattern. This is confirmed by the non
significance of the axes remainders that were included as residue;
and hence, much of the variability accounted for by the remaining
axes presents more noise than the pattern. According to Lavoranti
et al. (2001), the graphic evaluation for the biplot becomes valid
as the AMMI analysis has the main characteristic of capturing
most of the pattern in the first axes,.

Figure 1 presents a biplot of the AMMI analysis results.
It shows the line and environment means (additive mean effects)
in the abscissa, and scores of the IPCA1 (multiplicative
interaction), in the ordinate. When a line and an environment
have the same sign on the IPCA, their interaction is positive; if
different, their interaction is negative. When a line or an
environment has a IPCA score close to zero, interaction effect is
small (and, hence, can be fitted well by an additive model) that
is considered as stable.

For the sake of result interpretation regarding adaptability
and stability, in the present work the term high adaptability will
be used as synonym of high grain yield, and wide adaptability as
synonym of high stability, according to Freire Filho et al. (2003).

Biplot AMMI1 shows that the lines had a relatively similar
performance to the interaction (homogeneous variation for the
multiplicative effects in the vertical sense), except for the line 7
which had a different performance in relation to the other lines.
Environmental effects were more variable, showing that the
location x year interaction was very strong. The same locations
in different years they were quite distant to each other in the
biplot. A total of 18 lines (67% of the lines) presented means
above the grand mean of the checks (2177 kg ha-1). Among these,
lines USP 93-2643 (L5), USP 93-5082 (L12), USP 93-5243
(L13), USP 93-5582 (L19), and USP 93-5843 (L25) combined
high grain yield and stability, since they presented low scores
for the GE interaction axis. It is important to highlight the behavior
of line L 13 which presented the largest grain yield and high
stability. This line can be recommended for all three locations
because it presented strong stability across the environments.

The environments in the surroundings of the ESALQ
location presented higher interactions, mainly ES98 and ES99,
shown by the broader scores for the GE interaction.
Environments near the Areão location (AR96, AR97, AR98,
and AR99) were more predictable (smaller and low variation
scores for the GE interaction), but showed association with the
lowest means. It was observed that AR96, AR97 and AR99
exhibited similar performance in terms of additive effects of
environments. The environments associated with the Anhembi
location showed medium stability and high adaptability (high
grain yield).

The lines USP 93-5423 (14), USP 93-5692 (24) and USP
93-5860 (26) were more adapted to environment ES98. Lines
USP 93-2722 (L6), USP 93-55539 (15) and USP 93-5549 (L17)
presented positive adaptation with the environments ES97,
AR98 and AN96, respectively (Figure 1), as shown by the means
in Table 3. Line L 17 can be recommended for the Anhembi
location, while line L 6 can be indicated for the ESALQ location.

Three groups of lines can be distinguished as the similarity
for magnitude of the GE interaction: group 1 (most stable lines):
L1, L3, L4, L5, L8, L9, L10, L11, L12, L13, L16, L18, L19, L20,
L21, L22, L25 and L27; group 2 (intermediate stability): L14,
L17, L23, L24, and L26; and group 3 (least stable): L2, L6, and
L15. Line 7 presented larger interaction (instability) with the
environments. This indicates that 67% of lines were more stable
across the environments. In relation to the environments, two
group types are observed: group 1 (most stable environments):
AN97, AN98, AN99, AR97, AR98, AR99, ES96, and ES97; and
group 2 (least stable): AR96 and AN97. The environments AN96,
ES98 and ES99 grouped isolatedly, showing different
performances among them and also in relation to the other
environments (Figure 1).

The lines’ grouping was not related to the cross origin
(adapted or mixed) and adaptability. However, among the five

Table 2. Additive main affects and multiplicative interaction
analysis of variance for grain yield (kg ha-1) including the first
interaction principal component axis (IPCA1)

**P < 0.001, by F-test
1Fraction of sum of squares associated to each term or interaction

Total

Treatments

Environments (E)

Genotypes (G)

GE Interaction

IPCA1

Residual

  Error

635

323

11

26

286

36

250

312

190684921

151083385

77813175

18757752

54512458

14109120

40403500

39601536

300291

467750**

7073925**

721452**

190603**

391920**

161614

126928

79.23

51.50

12.42

36.08

25.88

74.12

Source of variation S Sdf MS R2 (%)1
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most productive lines, four lines were originated from mixed
crosses. The line 13, USP 93-5243, that presented high
adaptability and stability, belongs to a mixed cross (FT 81-
2.706 x PI 371.610). This result had not been expected, because
the probability of obtaining superior lines is a function of genic
frequency in the population, meaning that new improved lines
are more easily obtained in basic populations formed through
the recombination of elite cultivars.

Vello et al. (1988) comment that, in spite of the negative
effect that exotic materials may have on the mean of the
population derived from mixed crosses, it is possible to obtain
superior genotypes even in these crosses since the exotic parents
present good adaptation to the cultivated environments.
Probably, these lines should have concentrated, with the
advancing of the selfing generations, a larger number of genes for
adaptation from adapted parent, in detriment of the exotic
parents, resulting in lines with high stability.

Anhembi and ESALQ locations showed the most favorable
performance for grain yield (2567 kg ha-1 and 2436 kg ha-1,
respectively). The Areão location was unfavorable, since it

presented the lowest mean for grain yield (Table 3). These results
agree with those reported by Rocha and Vello (1999) in a study
on the genotype x location interaction in the crop year of 1996/
97 at the same locations.

The AMMI method allowed an easy graphic
interpretation of the results regarding adaptation and stability.
The analysis allowed capturing the pattern underlying to the
GE interaction, removing the largest part of the noise present in
the GE sum of squares, resulting in better accuracy in the
estimates of the genotypic responses across environments.
More precise yield estimates will increase the probability of
making successful selections (Crossa 1990).

AMMI method allowed an easy graphic interpretation of
the results regarding the adaptation and stability. The analysis
allowed capture the pattern underlying to the GE interaction,
removing the largest part of the present noise in the GE sum of
squares, resulting in better accuracy in the estimates of the
genotypic responses across environments. More precise yield
estimates will increase the probability of making successful
selections (Crossa 1990).

Grain yield (kg ha-1)

Figure 1. Biplot AMMI1: grain yield x first interaction component principal axis (IPCA1) for 27 experimental soybean lines with an intermediate maturity cycle, grown
in 12 environments (combinations of three locations and four years). Lines are represented by lozenges and environments by squares. The vertical line in the center
represents the grand mean yield of the checks (GMC = 2177 kg ha-1)

IP
C

A
 1
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Table 3. Grain yield (kg ha-1) means as predicted by model AMMI1 for 27 experimental soybean lines evaluated in 12 environments
(three locations and four years)

Lines

Order

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

L14

L15

L16

L17

L18

L19

L20

L21

L22

L23

L24

L25

L26

L27

USP

93-2258

93-2266

93-2514

93-2530

93-2643

93-2722

93-2725

93-2753

93-2802

93-2825

93-2870

93-5082

93-5243

93-5423

93-5539

93-5544

93-5549

93-5552

93-5582

93-5585

93-5586

93-5597

93-5690

93-5692

93-5843

93-5860

93-5884

AN96

2466

2310

2775

2586

2718

3035

1836

2413

2422

2597

2568

3030

3471

3180

2664

2584

3268

2712

2676

2572

2498

2818

2955

3114

2815

3127

2536

2731

AN97

2283

2333

2082

2265

2344

3028

2292

2084

2300

2070

2352

2764

2889

2180

2830

2258

2482

2144

2366

2153

2252

2154

1983

2303

2437

2204

2323

2339

AN98

2110

2090

2084

2140

2237

2796

1900

1962

2107

2016

2191

2620

2853

2288

2538

2135

2516

2104

2237

2061

2101

2146

2081

2346

2332

2285

2160

2238

AN99

2749

2648

2920

2831

2949

3366

2292

2656

2722

2787

2842

3290

3645

3241

3041

2828

3388

2891

2924

2790

2764

2971

3024

3227

3045

3209

2810

2957

AR96

1607

1675

1364

1579

1653

2368

1669

1397

1630

1367

1673

2082

2181

1438

2183

1571

1757

1437

1680

1458

1572

1439

1244

1576

1746

1468

1645

1647

AR97

1680

1599

1804

1750

1863

2314

1283

1575

1659

1687

1771

2214

2540

2098

2005

1747

2264

1787

1844

1700

1690

1858

1883

2100

1959

2072

1739

1870

AR98

2238

2267

2089

2235

2319

2966

2182

2054

2249

2061

2310

2728

2885

2219

2750

2228

2499

2139

2334

2132

2214

2158

2019

2322

2412

2234

2281

2316

AR99

1557

1440

1771

1652

1774

2160

1047

1477

1525

1624

1653

2106

2487

2118

1821

1649

2247

1732

1744

1619

1578

1819

1898

2088

1870

2079

1621

1784

ES96

2724

2672

2777

2775

2881

3383

2416

2598

2711

2683

2810

3247

3528

3027

3098

2771

3223

2777

2871

2711

2725

2834

2816

3056

2975

3013

2779

2884

ES97

2862

2847

2822

2888

2983

3552

2670

2709

2860

2758

2941

3369

3594

3017

3299

2882

3251

2845

2985

2806

2851

2885

2811

3080

3078

3016

2911

2984

ES98

1877

1538

2642

2121

2300

2290

679

1955

1780

2315

2010

2516

3238

3319

1765

2123

3217

2467

2201

2193

1965

2659

3068

3085

2400

3197

1974

2329

ES99

1626

1810

1092

1518

1563

2486

2051

1332

1683

1190

1673

2053

1972

992

2400

1508

1433

1236

1626

1342

1555

1183

813

1237

1653

1065

1646

1546

Line

2148

2102

2185

2195

2299

2812

1860

2018

2137

2096

2233

2668

2940

2426

2533

2190

2629

2189

2291

2128

2147

2244

2216

2461

2394

2414

2202

Anhembi

2567

Areão

1904

ESALQ

2436
Mean/location

Mean/environment

Environments Mean/

AN: Anhembi location; AR: Areão location; ES: ESALQ location

CONCLUSIONS

The lines and environments presented high variability
both in additive and multiplicative effects. Environments
associated with Anhembi and ESALQ locations were more
favorable than those associated with the Areão location for grain
yield. Anhembi and Areão locations were more predictable for
the crop year although the Anhembi location associated high
adaptability and predictability. USP 93-5082 and USP 93-5243
lines combined high adaptability and stability. The AMMI

method allowed an easy graphic interpretation of the results
regarding adaptation and stability.
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Estabilidade produtiva de linhagens de soja utilizando
análise de efeitos principais aditivos e interação
multiplicativa - AMMI

RESUMO - Avaliaram-se 27 linhagens de soja em três locais (Anhembi, Areão e Esalq) em Piracicaba, São Paulo, durante quatro
anos, com o objetivo de verificar o efeito do ambiente (E) sobre a adaptabilidade e estabilidade das linhagens (G), usando a análise
AMMI (additive main effects and multiplicative interaction). Os efeitos de G, E e da interação GE foram significativos e explicaram
51, 12 e 36% da variação, respectivamente. O primeiro e único componente principal da interação (IPCA1) explicou 26% da soma
de quadrados da interação GE; este concentrou a maior porção do padrão da interação GE. Os ambientes associados com
Anhembi e Esalq mostraram-se mais favoráveis, enquanto aqueles relacionados com Areão contribuíram negativamente para a
produtividade de grãos. No entanto, Anhembi e Areão foram mais previsíveis com os anos agrícolas. As linhagens USP 93-5082
e USP 93-5243 reuniram alta adaptabilidade e estabilidade.
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