Crop Breeding and Applied Biotechnology 5:265-271, 2005
Brazilian Society of Plant Breeding. Printed in Brazil

'CROP BREEDING AND
APPLIED BIOTECHNOLOGY

Prediction of genetic value in F, populations of Avena sativa L. using
Reml/Blup

Jefferson Luis Meirelles Coimbra™, Mauricio Marini Kopp?, Velci Queiroz de Souzat, Giovani Benin?, Volmir Sergio Marchioro?®,
Fernando IrgjaFelix de Carvalho!, and Antonio Costade Oliveira

Received 22 January 2005

Accepted 24 June 2005

ABSTRACT - In genetics and breeding studies it is common to conduct experiments of fixed (sowing method) and random
(populations) factors. Therefore, the most appropriate statistic analyses would use mixed linear models. In this sense, objectives of
thiswork werei) to estimate the variance components for the random factor effects and interaction popul ation x sowing method; ii)
to perform sel ection among popul ations and among popul ationsin each sowing method; iii) to compare the effect of the fixed factor.
Both the effect of components of the population variance aswell asthe effect of the single interaction popul ation x sowing methods
revealed low contributions to the total variance. It can therefore be concluded that segregating populations present narrow
genotypic variability. The Reml/Blup procedureisindicated for estimation/prediction in oat improvement where experiments generally

produce unbalanced data.

K ey wor ds: mixed linear models, linear prediction, sowing methods.

INTRODUCTION

One of the main contributions of quantitative
genetics to plant breeding has been to make variance
component estimates possible (Ramalho and Vencovsky
1978). According to Scheffé (1959) the mixed model was
extensively reported by Fisher in 1918 in studies on
covariance and genetic correlation between parents. He
was the first to partition the genetic variance of an
outcrossing population in three components: i) additive
genetic variance, which isdueto the mean gene effects; ii)
dominant genetic variance, which isdueto theintra-locus

interaction effects; iii) epistatic genetic variance, based
on the inter-locus interaction effects. Fisher also
demonstrated that covariance between parents is a
function of differences between variance components.
By concept, a variance component is variance
associated to random effects of amodel. Knowledge on
this subject is essential for genetics and breeding (Littel
et a. 1996). As a consequence, the devel opment of more
efficient selection methodsfor plant breeding dependson
this kind of information, for example, to understand the
genetic variability and the predominant gene action type
controlling thetrait under selection, which can be predicted

1Departamento de Fitotecnia, “ Faculdade de Agronomia — Eliseu Maciel”, Universidade Federal de Pelotas, C. P. 354, 96.001-970, Pelotas, RS, Brasil.

“E-mail: coimbrajefferson@pop.com.br

2Fundagdo Pr6 Sementes de Apoio a Pesquisa, Rua Diogo de Oliveira, 640, 99.025-130, Passo Fundo, RS, Brasil.
3Programa de trigo da Cooperativa Central de Pesquisa Agricola (COODETEC), BR 476, km 98, 85.818-660, C. P. 301, Cascavel, PR, Brasil.

Crop Breeding and Applied Biotechnology 5:265-271, 2005

265



JLM Coimbra et al.

by means of variance components.

The effect of a factor can be defined as fixed or
random. If agiven factor isconsidered fixed, naturally, the
goal will be to estimate and test hypotheses on linear
combinations. However, in the case of considering it
random, the aim isthe estimation of variance components,
onceitslevelsare considered arandom sample of agiven
study target genotype (Bueno Filho and Vencovsky 2000).

According to Henderson (1975), when considering
allelic segregationsin which each genotypeisavector of
alleles that segregate and unite to form new genotypes,
we have the situation in which selected individuals from
each crossrepresent a possible progeny sample. However,
in the case of assuming genetic effects as random, the
methodology of variance components can be employed
advantageously. Here, the random effects are predicted
using the Best Linear Unbiased Predictor - Blup, whichis
the most appropriate method of prediction of genetic
values, including the use for the prediction of virtua
crosses (Bernardo 1995). Henderson (1986) postul ated that
the main restriction for the use of this methodology was
the large demand for computational resources, nowadays
aless significant factor.

The environment effect can be considered alimiting
factor by the breeder, hampering selection based
exclusively on the phenotypic value. Theidentification of
the best environment to improve the efficiency of a
breeding program, mainly as a function of primary
components of grain yield, is therefore a challenge for
breeders (Hill et al. 1998). Research studies have
demonstrated the need to create new selection criteriaas
a strategy of modifying the conventionally used
techniques for winter cereals, focusing on enhanced
accuracy and precision in the measurement of genetic
differences and environmental effects (Santos and
Carvalho 1977, Cruz et al. 1983). Selection applied to
guantitativetraitsin unstable environments deservesmore
in-depth studies regarding the development of
mechanisms enabling the identification of a closer
correlation between genotypic and phenotypic values.

In this setting, objectives of this study were i) to
estimate the variance componentsfor random factor effects
(population) and for the interaction population x sowing
method,; ii) to perform selection among populations based
on the Reml/Blup methodology; iii) to compare the fixed
factor effect (sowing method).

MATERIALAND METHODS

The experiment was installed on an experimental area of
the Centro de Gendmica e Fitomelhoramento of the Faculdade
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deAgronomiaEliseu Maciel —Universidade Federal de Pelotas
(UFPel), Capéo do Ledo, state of Rio Grande do Sul, in 2000.
The following segregating F, oat populations were used in the
experiment: UPF 7 x UFRGS 14 (2770), UFRGS 14 x OR 2
(2771), UPF 7 x OR 2 (2772), UFRGS 18x UPF 16 (2773),
UFRGS 18 x OR 2 (2774), UPF 16 x OR 2 (2775), UPF 17 x
UFRGS 18 (2776), and UFRGS 18 x UPF 14 (2777). These
populations were evaluated under three different sowing
methods: spaced plants, standard sowing and hill plot. Thelatter
was described as hill method by Frey (1964) and consists of
sowing a determined number of seeds per hill. The experiment
had a complete randomized block design with two replications.
In the hill method, plots were composed of ten hills with 15
seeds per hill, spaced 45 cm apart. In the spaced plant method,
plots consisted of ten 2 m long rows spaced 20 cm apart with
one plant every 20 cm. In the standard sowing method, plots
were composed of a 2 m double row with 65 viable seeds per
meter.

After maturation, all panicles from the segregating
populations of all eight crosses in both replications and three
sowing methods were harvested. The evaluated trait was grain
weight panicle® (PW).

The mixed model or individual Blup (Resende and
Fernandes 1999) method was used with a modified estimation
of variance components and genetic parameters. Originally, the
covariances among parents were estimated and interpreted in
terms of their mathematical expectation (i.e. expected values),
generating the variance components. Currently, the components
of variance can be estimated directly asthe variances of random
effects of the mixed linear model (Barbosaet al. 2004).

Considering the trait panicle weight in grams (y), the
following model was obtained for the phenotypic observations:
y=up+m+p +pm +b +e,, where
M genotypic or general mean (intercept);

m: effect of the i"" method of conducting the populations;

p: effect of the j""segregating population;

pm: effect of theinteraction between thei"method of conducting
the populations and the j" segregating population;

b_effect of the k™block;

e, residue effect.

Fixed effects were assumed for the general mean and
conduction method, being these effects independent from each
other. For the random effects of segregating population (pj),
interaction (pmij), blocks (b,), and residue (eijk) a normal
distribution was assumed with mean 0 and variances 07, 0° |
Dzb and 07, respectively. Additionally, all random effects were
assumed to be independent.

The method of restricted maximum likelihood (Reml) in
an individual model became the standard method for the
estimation of variance components and genetic parametersfrom
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unbalanced data. The superior statistical properties of this
method make it preferableto the estimators of least squaresand
maximum likelihood (Searle et al. 1992). The estimates of
components of variance were predicted by the method proposed
by Patterson and Thompson (1971).

Initsmatrix form, the general linear mixed model described
by Harville (1977) is shown asfollows:

y=XB+Zi+e

inwhich

ylisthe vector of observations,

Xy IS the matrix of fixed effect incidence (known);

p+181 is the vector of fixed unknown effects;

Za is the matrix incidence of random effects (known);

q|’1 is the vector of random unknown effects;

-l isthe vector of random errors;

wherenisthe number of observations, p the number of parameters
and g the number of random effects.

We assumed that the random effects and errors (residues)
haveanormd distribution with average zero and werenot correlated
with the variance and covariance matrices, respectively. G and R
positivedefined matrices, by hypothesis, and, therefore, not singular,
givenby:

Var(i) = E(ii") = G and Var(e) = E(e€') = R.
The matrix can be written as:

v,y B0, 00
fo W RD

In this sense, we have:
V = Var(y) = Var(XR ) +Var(Zi) + Var(e)=ZVar (i)Z'+R =
ZGZ'+R
Assuming, though, that V isnot singular, and
E(Y)=E(XB + Zi + €)= XB,
50)
y~N(XB; ZGZ'+R).

RESULTS AND DISCUSSIONS

The effect of fixed factor sowing method indicated
significancefor Ftest P> F 0.0001 with 2 (numerator) and 13.6
(denominator) degrees of freedom, so the null hypothesis (H))
was rejected, as there is at least one contrast of means in this
treatment factor that differs from zero.

Table 1 displaysthe variance component valuesfor panicle
weight in oat. The most rel evant objectivefor using the random
model, mixed model or type !l isthe estimation of components
directly linked to genetic parameter estimates. By definition,
variance components are the variances associated to random
effects (Barbin 1995).
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Table 1. Variance components of predicted random effects by the
method of restricted maximum likelihood (Reml)

Sour ces of variation Predicted values  Predicted standard error
Populations 0.02779 0.01795
Populations x Methods 0.0442 0.00630
Blocks 0.0048 0.01220
Error 1.24360 0.01339

Classic and conventional methods used in plant breeding
are based on the fact that phenotype is a result of a joint and
independent action of genotype and environment, expressed in
terms of their variances associated to random factor effects.
According to Falconer and MacKay (1996), when quantifying
these components, one can reach conclusions on genetic
variability by predicting gainsto be obtained with the selection
of genetically superior or inferior (negative selection) plantsand
then choose strategies that maximize these gains. Resende and
Fernandez (1999) stated that the prediction of genetic values
and selection methods depends, essentially, on the estimate of
variance components. This means that genetic parameter
prediction, i.e. the estimation of the heritability coefficient both
in the broad and narrow sense only makes sense for random
effects. The method to predict genetic values designated best
linear unbiased prediction (Blup) is based on knowledge or a
precise estimation of genetic and phenotypic variance
components (Henderson 1986).

Analyzing the variance components closely (Table 1) one
can see that the large variation between the marginal means of
the eval uated segregating popul ation can be attributed to residual
variance (o?: =1.2436) which corresponds to over 95% in
comparison to genotypic variance (o?, =0.02779). In practice,
the variation in phenotypic expression can be ascribed to the
fact that panicle weight is a strictly quantitative trait, therefore
determining that the expression of thistrait is highly linked to
the expression of many genes of small effect on the phenotype.

Most traits of agronomical importance, as for example
grain yield and panicle weight, do not present clearly distinct
classes, as already observed many years ago by Menddl, i. e,
they present continuous variation and can be described astraits
of quantitative inheritance.

The first and great postulate of genetics is, generally
speaking, that phenotype isaresult of individual genotype and
environment contributions. In fact, as early as 1909, Johannsen
(Mather and Jinks 1984), demonstrated in his experimentswith
common bean that environmental factorswerethe major source
of variation among traits of quantitative inheritance, leading to
the conclusion that phenotype is not a good genotype indicator
for this type of trait.

A weighty motivefor using mixed linear models is the
possibility of predicting random effectsin the presence of fixed
effects by means of Blup, which isa powerful tool for both
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geneticsand plant breeding (Diasand Resende 2001). According
to Littell et a. (1996), the term prediction refers to random
effectsand the best linear unbiased prediction can be defined as
the result of the regression of effects of a random factor as a
function of observation (y) corrected to fixed factor effects.
Table 2 shows the prediction of random effects of eight
evaluated segregating F, populations. To makethesevalueseasier
to compare with the obtained adjusted means considering the
fixed model, the general mean value of the experiment (2.68622)
was added since the random effects are expressed originally in
positive and negative values and the sum of mathematical
expectation was equal to zero. The highest predicted valuefound
was 2.85573 g for population 2770 and the lowest 2.41093 g for
population 2772. The same table shows that the random effects
obtained with the mixed model, in comparison to the adjusted
meansby |east squares (L Smeans) are highly correlated. Another
fact worth mentioning isthat estimates of the predicted genetic
value for the segregating populations 2770 (0.16950) and 2772
(-0.2753) stood out as positive and negative val ues, respectively.

For Duchateau and Janssen (1997), Blup representsacontraction
of the difference between the marginal and the popul ation means.
If the genotypic variance component is much smaller than the
environmental variance, the predictor will therefore shrink
towards the expected population value (zero). Under such
circumstances, very likely therewill be no large dispersion among
the predicted average genotypic responses.

In the case of narrow genetic variability, the estimates
would not be expected to show any variation among the
segregating popul ation effects. Therefore, the mixed linear model
shows consistency with reality and is seen as a conceptually
more complete and informative (Resende and Fernandes 1999)
approach. From a practical point of view, it can be concluded
that even when the relative genetic variability (o2, /o ) islow,
the methodol ogy of mixed linear models can generate selections
that are strikingly different when compared to theclassicanalysis
(marginal meansand intrablock analysis).

The random effects or genetic values and the genotypic
values (adjusted means) for the eight segregating populations

Table 2. Predicted genetic values, genotypic values and adjusted means of eight oat F, segregating populations

Random effect

Adjusted means

Population
Genotypic effects Genotypic values (g) Panicle Weight (g)
2770 0.16950 2.85573 2.7461
2771 -0.14320 2.54303 2.3789
2772 -0.27530 2.41093 2.2222
2773 -0.04727 2.63896 2.4875
2774 0.11860 2.80483 2.6846
2775 -0.02196 2.66427 2.5148
2776 0.07972 2.76595 2.6437
2777 0.11990 2.80613 2.6896

evaluated specifically in each sowing method studied in this
work, considering the mixed linear model are displayed in Table
3. For the ease of interpretation of these values, the general
mean (model mean, only to have the values expressed in grams)
was added to each one of them (Table 3). Regarding the val ues of
random effects, a very distinct performance was observed for
the eight evaluated populations, as for example: i) population
2775 evaluated in the standard sowing method (-0.17820), ii)
population 2772 evaluated in the hill method (-0.18210), and
iii) 2771 (-0.13860) evaluated in the hill method; note that the
variance component (P*M) was remarkably lower than both
the segregating population variance (0.02779) and the
experimental error variance (1.2436). Littell et al. (1996)
demonstrated how the values of predictable functions, for
example experimental means of random progeni es, change when
one changesthe magnitude of variance components. Theinterest
for information related to the genotypic variance component
(o?%;) isthereforeimmediate sinceit isdirectly related with the
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segregating popul ation’sgenetic potential to produce genetically
superior genotypes. Besides, this component is also of general
interest, becauseit isrelated to thelocal random variability, i.e.,
the experimental error variance (g% ). The conclusion can
therefore be drawn that all evaluated segregating populations
perform distinctly in the different sowing methods tested.
Theanalysisof adjusted comparison of means (L Smeans) to the
fixed factor (sowing method) was performed using the t test
(comparison one to one) for the trait panicle weight, and as a
result statistical significancewas stated for all evaluated contrasts
(Table 4). The spaced plants and standard sowing methods
produced the highest (3.0150) and the lowest (2.0970) adjusted
means, respectively; in line with the results of Marchioro et al.
(2003), who found the highest mean value for panicleweight in
grams considering the spaced plants sowing method.

The variance component for populations in each sowing
method studied in thisexperiment isdescribed in Figure 1. Searle
et al. (1992) reported that random variable predictors are direct
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Table 3. Predicted genetic values and genotypic values (Mg+Blup) for the interaction populations x sowing methods (derivation and
panicle weight in grams) of eight oat F, segregating populations sown and conducted under the sowing methods: standard sowing, spaced

plants and hill plot

. Standard Sowing Spaced Plants Hill Plot
Population

Estimates PW (g) Estimates PW (g) Estimates PW (g)
2770 -0.05728 2.62894 0.08719 2.77341 0.05810 2.74432
2771 0.14460 2.83082 -0.08032 2.60590 -0.13860 2.54762
2772 0.09673 2.78295 -0.18210 2.50412 -0.05744 2.62878
2773 -0.02921 2.65701 0.04235 2.72857 -0.03767 2.64855
2774 -0.04671 2.63951 0.12460 2.81082 -0.01644 2.66978
2775 -0.17820 2.50802 0.06047 2.74669 0.10640 2.79262
2776 0.08378 2.77000 -0.04442 2.64180 0.00201 2.68823
2777 -0.01374 2.67248 -0.00778 2.67844 0.08371 2.76993

Table 4. Individually adjusted methods (Least Square Means) for the trait panicle weight (PW) for sowing method factor

M ethod PW (9) IL SL P > |t| HO: LSmeans (i)=L Smeans(j)
SS SP HP
s 2.0970 1.8848 2.3102 SS 0.0001 0.0001
SP 3.0150 2.8038 3.2252 SP 0.0001
HP 2.5257 2.3129 2.7374 HP

* |L and SL=inferior and superior limit, respectively
SS: Standard sowing; SP: Spaced plant; and HP: Hill Plot

functions of the variance componentsinvolved in the model of
analysis. Figure 1 shows that this effect once more evidences a
narrow variation in the evaluated segregating populations.
However, the same figure shows that the interaction population
x sowing method effect, if improperly evaluated as adjusted
means, would very likely lead to ahighly unreliableinterpretation.
Therefore, random effects predicted through Blups clearly
guarantee a higher confidence for these types of estimates,
because in this case the biological covariances are taken into
account. The use of mixed models can be more appropriate in
the case of ahigh degree of unbalanced data (Robinson 1991). In
this study, for example, there were mean effects that consisted
of 400 to 1300 observations, making both the conventional
statistical analysis and the biological interpretation of the data
difficult and unreliable. Nevertheless, Figure 1 showsthat each
population performed distinctly when evaluated under different
sowing methods.

One of the objectives of most plant breeding programsis
to estimate the amount of phenotypic variation caused by
interaction (Ramalho et a. 2004). With thisinformation on hand,
the breeder can direct hiswork to attenuateits effects. Phenotypic
variance can be described as the sum of environmental, genetic
and interaction variances among the factors
(0?1 = 0% + 0% +d%:). Inthis specific case, we have less than
2% of phenotypic variance that can be attributed to interaction
effects. There are many sources that frequently contribute to
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increase experimental error estimates. Ramalho et al. (2000) cite
factors such as: i) soil heterogeneity; ii) heterogeneity in the
experimental material; iii) plot size and shape; iv) differencesin
the number of plantsin the plot-stand effect; v) treatment type,
etc. An estimation of the environmental varianceistherefore not
sufficient; one must plan thetrialsin away that they control the
highest possible number of sources of variation.

Besides the complicating factors cited above, one must
consider that the number of genesinvolved in the expression of
each trait directly influences the ideal population size required
to reveal al possible genotypes, so it is unviable to obtain
recombinants for many traitsin asingle step. For example, if a
given trait is determined by eight allele pairs, which is a small
number for aquantitativetrait, theideal F, generation necessary
to reveal all possible genotypes would be 48, i.e., 65.536
individuals, a number mostly impossible to obtain in field
experimentsin view of thelimited field area, number of seedsor
even financial resources.
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Figure 1. Adjusted means (L Smeans) and general means + random effect (Mg+Blups) of eight oat F, segregating popul ations conducted by three sowing methods (SS:
Standard sowing; SP: Spaced plant; and HP: Hill Plot)

Predicdo dovalor genético em populacdesF, de Avena sativa L . usando
Reml/Blup

RESUMO - Na area de genética e melhoramento é comum conduzir experimentos constituidos de fatores fixos (método de
semeadura) e aleatorios (popul agdes). Sendo assim, a andlise estatistica mais apropriada deveria ser por meio demodeloslineares
mistos. Neste contexto, os objetivos deste trabalho foram: i) estimar os componentes de variancia para os efeitos do fator aleatorio
einteracéo populacdo x método de semeadura; ii) realizar a selegéo entre popul acdes e entre popul agdes dentro de cada método de
semeadura; iii) comparar o efeito do fator fixo. Tanto o efeito dos componentes da variancia das populagdes quanto o efeito da
interacédo simples populacao x métodos de semeadura revelaram uma baixa contribuigdo para a variancia total. Desde modo,
pode-se concluir que as popul agfes segregantes apresentam uma estreita variabilidade genotipica. O procedimento Reml/Blup é
indicado para a estimacdo/predicdo no melhoramento de plantas de aveia, cujos experimentos, em geral, geram dados ndo
balanceados.

Palavras-chave: lineares mistos, predicéo linear, métodos de semeadura.
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