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INTRODUCTION

Most statistical methods for mapping quantitative
trait loci (QTL) are based on models which assume normal
distribution (Lander and Botstein 1989, Halley and Knott
1992, Jansen 1993, Zeng 1994, Jiang and Zeng 1995, Kao
et al. 1999). In plant breeding however there are discrete
traits of interest for which such an assumption does not
hold, such as counts of number of ears or tillers, which
may be modeled by a Poisson distribution, or disease
status, scored as absent or present. As Jansen (1992)
states, consideration of actual distribution should lead to
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ABSTRACT - QTL mapping consists of estimating the position and effects of genes (or linkage groups) that control quantitative
traits. For traits that follow a normal distribution of probability, statistical approaches for QTL mapping are described in
literature. However, for other traits the amount of research is little. The present work aimed to evaluate four alternative
methods for QTL mapping of genes that control Poisson traits. The studied approaches were: standard interval mapping
methodologies of Lander and Botstein and of Haley and Knott, a mixed model based on Poisson distributions, and a generalized
linear model. Through computational simulation, the results showed great similarity for the different approaches under study.
All approaches were highly effective for the tested simulations, especially when the abnormality of data in use was taken into
account. Owing to the computational simplicity, Harley and Knott’s methodology was considered most effective.
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an increase in statistical power, in relation to normality-
based methods. The author developed a mixture model for
mapping QTL with a general distribution, and verified the
superiority of maximum likelihood if residuals are outcome
of an exponential distribution. Visscher et al. (1996)
developed QTL mapping for binary traits using a
generalized linear model (McCullagh and Nelder 1989) and
linear regression approach (Haley and Knott 1992). The
methods were evaluated by stochastic simulation in a wide
range of conditions. Very similar results were verified with
regard to QTL position and effects and detection power.
Consequently, the authors suggested that, owing to its
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simplicity and availability in standard software, simple
linear regression as proposed by Haley and Knott (1992)
would be more efficient for QTL mapping for binary traits.
Another type of discrete data occurs when responses are
categories of an ordinal scale, such as disease severity. In
such cases, the proportional odds model, a kind of
generalized linear model, can be used (Spyrides-Cunha et
al. 2000).

For QTL mapping, it would be useful to verify
whether normality-based methods as linear regression also
show robustness with other discrete data, such as counts
following a Poisson distribution. Linear regression does
not use all information about trait distribution, even in
presence of normality. The reason is that the distribution
of phenotypes, given a marker genotype, is actually a
mixture of distributions corresponding to the different QTL
genotypes. Linear regression is essentially based on only
the expectation of such distribution, while the method of
maximum likelihood (Lander and Botstein 1989) takes the
fact that it is a mixture into account. Nevertheless, with
normality very similar results are found with both methods
(Haley and Knott 1992). If the trait distribution is not
normal, a general mixture model can be constructed for
QTL mapping (Lynch and Walsh 1998), and the parameters
estimated by maximum likelihood. Alternatively, a
generalized linear model considering the actual distribution
could be used, with a linear predictor corresponding to
the expectation of that mixture. The linear regression
approach of Haley and Knott (1992) is therefore a particular
case of this model, considering identity as link function.
Again, there is some loss of information in this generalized
linear model, but it might also lead to no meaningful
decrease of precision or QTL detection power.

The objective of this work was to investigate four
different approaches for QTL mapping for Poisson traits
using computer simulation. Two mixture models were used
in association with maximum likelihood, assuming Poisson
and normal distribution, respectively. The latter method
corresponded to that of Lander and Botstein (1989). The
generalized linear model mentioned above was also
considered, in particular the Poisson distribution and the
standard linear regression proposed by Haley and Knott
(1992).

MATERIAL   AND METHODS

Models for QTL mapping for Poisson traits
The theory of threshold characters (Falconer and

Mackay 1996) was basis of the models developed by
Visscher et al. (1996). Falconer and Mackay (1996) consider

the cases of two (binary traits) and three classes (two
thresholds). The generalization to an infinite number of
classes, which is the case of a Poisson distribution, is not
straightforward. Instead, we chose to use the general mixture
model (Lynch and Walsh 1998) which is typical in QTL
analysis, considering a mixture of two-parameter distributions
from the exponential family. According to McCullagh and
Nelder (1989), a probability density function belongs to the
exponential family of distribution if it can be written under a
general formula:
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We assume that genotypes of each QTL determine the
value of the main parameter (denoted ), but the QTL does
not affect the nuisance parameter . The number of
distributions depends on the number of QTL genotypes in
the population (e.g. two or three in a backcross or F2
population, respectively). The weights or proportions of the
mixture are determined by the probabilities of each QTL
genotype, given the genotype of two adjacent and
codominant marker loci flanking an interval where there may
be a QTL. The distance between such markers is assumed to
be known, obtained from a previously constructed molecular
map. The following considerations refer to a backcross
population, but generalization to other population types is
straightforward.

Suppose plants from an inbred line 1 with QTL
genotype designated QQ are crossed with plants from line
2 with QTL genotype qq, originating F1 plants with
genotype Qq. Such plants are backcrossed with line 1,
and descendants are QQ or Qq. We further suppose that
such genotypes determine values of q equal to qQ and qq,
respectively. There is a fixed f value, regardless of the
QTL genotype. The probability distribution of individuals
of a given marker genotype is a mixture of two distributions,
correspondent to genotypes QQ and Qq, with weights
equal to the conditional probabilities of such QTL
genotypes, on marker genotype. These probabilities are
presented in Table 1 for a backcross. In this Table, markers
1 and 2 flanking an interval are represented each one by
upper or lower case letters, referring to lines 1 and 2,
respectively. For any position of the putative QTL in the
interval, maximum likelihood expressions can be obtained
to solve for functions of qQ, qq and f. These are not closed
form expressions, but call for an iterative procedure, which
is generally referred to as “expectation-conditional
maximization (ECM) algorithm” (Meng and Rubin 1993,
Zeng 1994). Across the marker interval, one should keep the
estimates corresponding to the position that maximizes
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likelihood. In the case of normal distribution, when
convergence is attained, this process leads to the maximum
likelihood estimates of Lander and Botstein.

In the case of Poisson distribution there is a single
parameter, the mean, which is assumed to be affected by the
putative QTL on the interval. Within each QTL genotype
there is some variability due to environment effect, with
variance equal to the mean. Despite the simplicity of this
mixture model, this dependence of environment effect upon
genotype may seem tantalizing, since it is rather unusual in
quantitative genetics. This dependence is not unfounded. In
the theory of threshold characters with two classes, for
example, there is no such dependence in the liability scale,
but it arises in the response scale if classes are designated by
values 0 and 1, due to the different probabilities of value 1.

In either case (Normal or Poisson), detection of the
putative QTL may be based on the likelihood ratio test
statistic, or equivalently on the logarithm of the odds ratio
(Lynch and Walsh 1998), which are generally displayed
graphically across the marker interval. The overall
significance level should be controlled, considering the
whole set of intervals investigated, and decision rule could
be based on the chi-square approximation or permutation
tests (Doerge and Churchill 1996).

The regression model (generalized or not) for QTL
mapping uses the following linear predictor:

**

0
Xbb ���

where b0 is the intercept, b* accounts for the QTL effect,
and X* is equal to 1 if QTL genotype is QQ, and 0 if it is Qq.
Since QTL genotype is unknown, h will refer to the
expectation conditioned on marker genotype for actual
data, and so X* of individual i will be:
Xi

* = 1 ´ P(QQ ½Mi) + 0 ´ P(Qq½Mi) = P(QQ ½Mi)
where P is the probability of a given QTL genotype, given
the marker genotype Mi of individual i. To every QTL
position considered in the interval, a regression model is
fitted with different values of Xi

* of each individual, since
P depends on the recombination fractions between QTL
and each flanking marker, and consequently on QTL
position. Under normal distribution, � is directly the
expectation of Yi, the phenotype of individual i. This
approach corresponds basically to the model of Haley and
Knott (1992). For non-normal distributions, �  is related
to Yi expectation through an appropriate link function
(McCullagh and Nelder 1989). For Poisson it is usual to
consider   the   natural  log   function.  If i�  designates  Yi

Table 1. Conditional probabilities of QTL genotypes given the genotype of flanking markers in an interval, considering a backcross
population and assuming no interference*

* r1, r2: recombination fractions between QTL and marker locus 1 and 2, respectively

expectation, then  **

0
ln Xbbi ���  and   **

0 Xbb

i e
���

As usual in the generalized linear models theory,
parameters b0 and b* can be estimated by maximum
likelihood and the hypothesis that b* is equal to zero tested
by the likelihood ratio test using chi-square approximation
(the so-called analysis of deviance). Rejection of such
hypothesis would indicate the presence of a QTL on that
position.
Data simulation

Individuals from backcross populations were
simulated, receiving correspondent Boolean values “true”
or “false” to mimic QTL and marker loci, according to the
genotypes (that of the recurrent parent or F1 population,

respectively). Without loss of generality, a single interval
was considered, flanked by two markers. Interval length
was equal to 0.1 or 0.5 Morgan, to simulate more or less
saturated molecular maps. Crossovers occurred according
to Haldane’s mapping function. Sample sizes corresponded
to 50 or 200 individuals. Values of a fictitious discrete trait
were generated for each individual, by randomly picking
outcomes from Poisson distributions. In a given backcross,
trait mean was equal to 1 or 10. The choice of such values
aimed at the construction of distributions farther from or
closer to normality, respectively, which could affect the
similarity among the results of the mapping methods. A
single interval was simulated considering the presence or
absence of QTL. If there were no QTL on the segment, the
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trait outcome of each individual of the same backcross
was based on the same Poisson distribution. If a QTL
were present, the Poisson parameter depended on the QTL
genotype of the individual, but in a way that the backcross
mean was always equal to 1 or 10. Designating the Poisson
parameter of each QTL genotype as lQQ and lQq, they can
be expressed in terms of genetic effects as:
� QQ = m + a                     � Qq = m
where m is the mean of the individuals Qq, and a is the
difference between the means of the individuals of both
QTL genotypes. Since the expected frequencies in all such
genotypic classes are the same, the backcross mean is:

 

Parameter  can also be interpreted as mean variance
within QTL genotypic classes. If present on the segment,
a QTL was responsible for explaining 0.02 or 0.2 of the
proportion of phenotypic variation. Such magnitudes were
chosen to consider a QTL of minor or major effect. If this
proportion is represented by p, then:

where Vg is the genetic variance due to that QTL and equals
to a2/4, the correspondent value for a backcross. Vp, the
phenotypic variance, is the sum of Vg and � . From this
expression it follows that, for fixed values of p and � , it is
possible to solve for a through:

and substituting it in the formula of  and solving for m:

With such values, the resulting parameters QQ�  and
Qq� were used to generate the trait values of the individuals

according to the QTL genotype. It is interesting to note
that, since Qq�  is necessarily non-negative for given  and
p, there is a maximum value allowed for a, equal to �2 .
The values used in this study did not violate the constraint
of non-negativity.

Considering all combinations of different conditions
regarding interval length, sample size, � , QTL presence
and p (if a QTL is present), 24 situations were studied. For
each situation, 5000 stochastic simulations (independent
random samples) were carried out. A same simulated data
set was analyzed according to the four mapping methods
mentioned previously: the mixture of Poisson distributions
(PM), Lander and Botstein’s mixture of normal distributions

(LB), generalized linear regression (GLR), and Haley and
Knott’s standard linear regression (HK). The mean results
across simulations allowed the evaluation of the detection
power of QTL and estimation of bias and mean absolute
error (MAE), which is a measure of precision. Under the
null hypothesis (no QTL), actual type I error rates were
comparable to the nominal significance level (0.05).

RESULTS AND DISCUSSION

Table 2 shows mean results of 5,000 simulations
considering a sample size of 200 individuals, an interval
length of 0.5 Morgan between markers and population
mean 1�� . One notes that under null hypothesis (no
QTL), the actual type I error rates were below significance
level (0.05) for all methods. The reason is that the patterns
of the test statistic were intermediate between those of
chi-square distributions with 1 and 2 degrees of freedom,
with regard to 95 percentiles and distribution shape (data
not shown). This agreed with previous results of Zeng
(1994). Using simulation, the author verified that the
statistical test distribution is similar to that of a chi-square
for a fixed position in the interval, but it deviates towards
the intermediate pattern when QTL position is estimated.
Therefore, using chi-square distribution with an additional
degree of freedom to take QTL position into account seems
suitable, yet a little conservative. Anyway, type I error
rates of the four methods were quite similar, ranging from
0.032 to 0.035. Comparing the mean estimates of m and a
under null hypothesis to the corresponding parametric
values (Table 2), no considerable biases can be seen.
Among mapping methods, the mean estimates as well as
MAE values were very close (those of Haley and Knott’s
method were actually a little lower), indicating that all
methods have similar precision.

With null hypothesis false (a QTL present on the
segment), detection power was strongly affected by the
magnitude of QTL effect (Table 2). A QTL that explains 0.2
of the phenotypic variation will almost surely be detected
under the considered conditions, while a QTL with
p = 0.02 will have a chance to be detected close to 0.2
(20%). No appreciable differences in detection power were
observed among all methods. The estimate of m, a and
QTL position at p = 0.02 had mean values close to
parametric values (Table 2). With p = 0.2, larger deviations
were observed for methods GLR and LB, considering
parameter m. Estimates of a with LB method showed a
stronger downward bias. Mean QTL position estimates
were similar, but the HK method tended to be more precise
at p = 0.02.



314                                                                                                        Crop Breeding and Applied Biotechnology 5:310-317, 2005

AO Ribeiro et al.

Simulations under the same conditions of Table 2
but with 10�� showed quite similar trends and are
therefore not shown here. Rejection rates of null
hypothesis (true or not) were very close to those with � = 1,
yet slightly higher. The same general tendency of similarity
across methods was observed for detection power, bias
and precision. This was not surprising, since with the
increase of  trait distribution approaches normality. The
noticeable point is the occurrence of this similarity with

low, that is, in cases where the trait nature is clearly discrete.
Table 3 shows identical conditions to those of Table 2

(sample size of 200 individuals, population mean 1�� ), but
with an interval length of 0.1 Morgan between markers. Under
null hypothesis, the actual type I error rates were slightly inferior
to those of Table 2. The reason for this may be that, with a smaller
interval, the test would be more similar to that of fixed position, for
which statistic test distribution is similar to a chi-square with 1
degree of freedom for backcrosses, according to Zeng (1994).

The mean estimates of m and a under null hypothesis
were again very close to parametric values, and they were
similar among mapping methods, as well as MAE values,
except for HK method, which was a little more precise. If
the null hypothesis is false, there is an increase in detection
power, if rates are compared to those of Table 2. This was
a reflex of the fact that smaller intervals (dense maps)
correspond to markers closer to putative QTL, leading to
an increase in power, given large enough sample sizes for
the occurrence of recombination. With p = 0.2, null
hypothesis was rejected throughout in 5000 simulations
by all methods. Again, detection power was strongly
affected by QTL effect. Rejection rates of null hypothesis
decreased to about 0.35 with  p = 0.02. With a QTL of
minor or major effect, estimates of m, a and QTL position
were very similar among all methods, this was also
observed regarding MAE. Since parameters m and a have
the same real values in Tables 2 and 3, it is interesting to
note that MAE values are lower in Table 3, indicating that
the smaller interval allowed more precise estimates. Again,
results with  10��  showed very similar trends to those
with 1�� , and are not shown here.

Tables 4 and 5 are analogous to Tables 2 and 3,

respectively, but consider a sample size of 50 individuals.
With regard to (true) null hypothesis rejection, it can be
seen that rates were close under different sample sizes,
especially for methods LB and HK. However, with false
null hypothesis, QTL detection power was considerably
decreased, especially when considering a QTL of minor
effect (about 0.09 in both interval lengths). With p = 0.2,
rates decreased more than 0.3 (Table 4) and 0.25 (Table 5)
with the longer and the smaller interval, respectively. Under
the former condition (Tables 2 and 3), methods PM and
GLR were somewhat more powerful than LB and HK.
Reduced sample sizes also affected precision. Comparing
MAE values of Tables 2 and 3 to the corresponding ones
in Tables 4 and 5 for parameters m, a and QTL position, it
can be seen that they were higher throughout, sometimes
more than doubled. Anyway, MAE values and mean
estimates of such parameters were generally very similar
across methods. For parameter m, methods PM and HK
showed lower bias at p = 0.2 in Table 4 (larger interval), but
they were a little less precise based on MAE. The QTL
position was estimated with more precision by the HK
method throughout.

Situations investigated in this study considered only

Table 2. Simulation results of four QTL mapping methods for a Poisson trait: mixture of Poisson (MP), generalized linear regression (GLR),
method of Lander and Botstein (LB) and of Haley and Knott (HK). Values are means of 5000 runs, considering a backcross with mean = 1,
sample size of 200 individuals and length interval of 0.5 Morgan between markers*

*p: proportion of phenotypic variance explained by QTL, H0: null hypothesis (in the QTL), m: genotypic value of individuals Qq, a: difference between genotypic
values of individuals QQ and Qq, MAE: mean absolute error. † Expressed in Morgan

Method
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Table 3. Simulation results of four QTL mapping methods for a Poisson trait: mixture of Poisson (MP), generalized linear regression (GLR),
method of Lander and Botstein (LB) and of Haley and Knott (HK). Values are means of 5000 runs, considering a backcross with mean = 1,
sample size of 200 individuals and length interval of 0.1 Morgan between markers*

* p: proportion of phenotypic variance explained by QTL, H0: null hypothesis (in the QTL), m: genotypic value of individuals Qq, a: difference between genotypic
values of individuals QQ and Qq, MAE: mean absolute error. † Expressed in Morgan

Table 4. Simulation results of four QTL mapping methods for a Poisson trait: mixture of Poisson (MP), generalized linear regression (GLR),
method of Lander and Botstein (LB) and of Haley and Knott (HK). Values are means of 5000 runs, considering a backcross with mean = 1,
sample size of 50 individuals and length interval of 0.5 Morgan between markers*

* p: proportion of phenotypic variance explained by QTL, H0: null hypothesis (in the QTL), m: genotypic value of individuals Qq, a: difference between genotypic
values of individuals QQ and Qq, MAE: mean absolute error. † Expressed in Morgan

Method

Method

one population type, the backcross, which does not allow
the discrimination of additive from dominance effects. In the
strict sense, it is not possible to generalize the present results
for other population types. However, Visscher et al. (1996)
found very close trends considering backcross and F2
populations for binary traits, in the sense that the normality-
based method (HK) yielded quite similar results to those of
the generalized linear model. It is therefore possible that this
could be the case for the discrete distribution considered in
this study.

This study also considered only one single interval
investigated at a time. Although this implies in no loss of
generality, in practice one would ideally remove QTL
effects outside a given interval being tested. The aim is to
remove genetic variation from residuals, increasing power
and precision, and also to eventually eliminate biases
caused by other QTL in the same linkage group. This idea
led to the approach of combining multiple regression with
interval mapping (Jansen 1992, Zeng 1994), the so-called
composite interval mapping. The selection of regression
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Table 5. Simulation results of four QTL mapping methods for a Poisson trait: mixture of Poisson (MP), generalized linear regression
(GLR), method of Lander and Botstein (LB) and of Haley and Knott (HK). Values are means of 5000 runs, considering a backcross with
mean = 1, sample size of 50 individuals and length interval of 0.1 Morgan between markers*

*p: proportion of phenotypic variance explained by QTL, H0: null hypothesis (in the QTL), m: genotypic value of individuals Qq, a: difference between genotypic
values of individuals QQ and Qq, MAE: mean absolute error. † Expressed in Morgan

variables via some method as for example stepwise or
backward elimination can account for the effects of other
QTL. Under normality this is straightforward, by
considering a regression model containing the effect(s)
of a QTL in a given interval (for a fixed position) and
parameters referring to markers other than those flanking
that interval. Alternatively, such parameters could be
incorporated in the regression model of Haley and Knott
(1992). If the trait distribution is Poisson (or even other
non-normal distribution), then a generalized linear
regression should be considered. Using a linear predictor
similar to the Zeng (1994) model of composite interval
mapping, the approach would be similar to the PM method
in this study, but eventually taking the effect of the
remaining QTL into account. Another possibility would
be the use of a linear predictor correspondent to the model
of Haley and Knott (1992), but also with additional
regression coefficients referent to marker loci not flanking
the given interval.

The PM method is theoretically the one that can
extract most information from the kind of data simulated in

this study, for it considers their discrete nature and the
mixture of distributions inherent in QTL analysis.
Nevertheless, even under conditions of clearly discrete data
(low ), the four methods generally showed very similar results
for precision of estimates and QTL detection power. This
suggests that the choice of the method could be based on
computational efficiency, which would prefer the HK method
since it does not require an iterative process for parameter
estimation, given a QTL position. Although this aspect of
efficiency tends to be of minor importance since hardware
is constantly being improved and speeded up, it may be of
considerable relevance if one uses permutation tests or
resampling techniques such as bootstrap. Our results as
well as those of Zeng (1994) show that the use of chi-squares
to determine critical regions for the likelihood ratio test is
somewhat conservative, since this does not show the exact
statistical distribution. Therefore, permutation tests could
be useful when dealing with actual data.
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Mapeamento de QTL de características Poisson: um estudo
de simulação

RESUMO - O mapeamento de QTL (Locos de Caracteres Quantitativos) consiste na estimação da posição e dos efeitos de
genes (ou grupos de ligação) controladores de características quantitativas. Para características que seguem uma distribuição
normal de probabilidade existem metodologias estatísticas para o mapeamento de QTL já descritas na literatura, porém,
para características discretas o volume de pesquisas é pequeno. Assim, este trabalho objetivou avaliar quatro métodos
alternativos para o mapeamento de QTL controladores de características Poisson. As metodologias investigadas foram:
mapeamento por intervalo padrão com os enfoques de Haley e Knott, e Lander e Botstein, misturas de distribuições Poisson
e Modelos Lineares Generalizados. Os resultados, obtidos através de simulação computacional, mostraram muita similaridade
entre as metodologias testadas, sendo que estas foram bastante eficazes, principalmente, considerando a falta de normalidade
dos dados. Devido à simplicidade computacional, a metodologia de Haley e Knott foi considerada mais eficiente.

Palavras-chave: Mapeamento de QTL, Distribuição de Poisson, simulação.


