

## ARTICLE

# Pedigree testing for the SCS425 Luiza apple cultivar

# Thyana Lays Brancher<sup>1\*</sup>, Marcus Vinicius Kvitschal<sup>2</sup>, Luane Bosetto<sup>3</sup>, Flavia Anan Saiki<sup>3</sup>, Maraisa Crestani Hawerroth<sup>4</sup> and Altamir Frederico Guidolin<sup>3</sup>

**Abstract:** According to literature, the apple cultivar SCS425 Luiza is a hybrid of Imperatriz<sup> $\circ$ </sup> and Cripps Pink<sup> $\circ$ </sup>; however, molecular analysis of gametophytic self-incompatibility alleles showed the presence of an unexpected allele in SCS425 Luiza. This raised doubts about the fidelity of the pedigree. Thus, this study aimed to investigate the real genealogy of the SCS425 Luiza cultivar via fingerprint analysis. A total of 19 pairs of SSR primers covering 12 of the 17 chromosomes were used. Imperatriz' was tested as the female parent, and either 'Cripps Pink' or 'Baronesa' was tested as the presumed male parents. The results excluded 'Cripps Pink' as the male parent because most of the markers showed alleles of exclusion with Likelihood ratio (LR) value equal to zero. In contrast, when Baronesa was tested as the male parent, all alleles followed the expected segregation with very high LR values (>10.000). Therefore, it is concluded that the correct genealogy of the SCS425 Luiza cultivar is Imperatriz<sup> $\circ$ </sup> and Baronesa<sup> $\circ$ </sup>.

**Keywords**: Malus x domestica *Borkh., paternity test, molecular fingerprint, SSR markers* 

#### INTRODUCTION

Apple (*Malus x domestica* Borkh.) is the third most produced fruit in the world, and its production has been rising in recent years (FAO 2022). It is a deciduous fruit species of temperate climate, belonging to the family Rosaceae, subfamily Pomoideae. Apple trees usually need the accumulation of a minimum amount of chilling hours (below 7.2 °C) to overcome the dormancy of their buds (endodormancy) and start a new reproductive cycle, but how much chilling accumulation is needed varies according to the cultivar (Petri 2002). The basic number of chromosomes for the genus Malus is x = 17, possibly originating from hybridization between two wild species from Prunoideae (x = 8) and Spiraeoideae (x = 9) subfamilies, suggesting an allopolyploid origin (Phips et al. 1991). Most apple trees are diploid (2n = 34), but triploid individuals can also occur naturally (Brown 2012). Plants of the genus Malus are allogamous due to the mechanism of gametophytic self-incompatibility, even with hermaphrodite flowers (Batlle et al. 1995, Matsumoto 2014, De Franceschi et al. 2016).

SCS425 Luiza cultivar is an agronomically important cultivar released by the Apple Breeding Program of the Agricultural Research and Rural Extension Company of Santa Catarina – Epagri, Brazil (Denardi et al. 2019a). The cultivar is characterized by having a medium chilling requirement, being resistant to





\*Corresponding author: E-mail: thyanabrancher@gmail.com @ ORCID: 0000-0003-3337-6314

> Received: 04 August 2023 Accepted: 30 August 2023 Published: 10 October 2023

<sup>1</sup> Universidade Federal de Lavras, Trevo Rotatório Professor Edmir Sá Santos, Universidade Federal de Lavras, 37203-202, Lavras, MG, Brazil
<sup>2</sup> Epagri, Rua Abílio Franco, 1500, Bom Suc-

esso, 89501-032, Caçador, SC, Brazil <sup>3</sup> UDESC - Centro de Ciências Agroveterinárias, Avenida Luiz de Camões, 2090, Conta Dinheiro, 88520-000, Lages, SC, Brazil <sup>4</sup> InnoveAgro Pesquisa e Consultoria Agronômica, Avenida Militar, 107, Santa Terezinha, 95201-000, Vacaria, RS, Brazil

glomerella leaf spot (*Colletotrichum* spp.) and having high fruit quality. According to Denardi et al. (2019a), this cultivar is the result of hybridization between cultivars Imperatriz ( $\bigcirc$ ) and Cripps Pink ( $\bigcirc$ ), which are characterized by having genotype  $S_3S_5$  and  $S_2S_{23}$ , respectively, at self-incompatibility locus (Albuquerque Junior et al. 2011, Brancher et al. 2020). However, molecular analysis of this locus in the SCS425 Luiza cultivar identified an  $S_5$  allele and an unexpected  $S_9$  allele (Brancher et al. 2020). This raised suspicions about the paternal genealogy information described in the records of Epagri's Apple Breeding Program about the original population, from which the SCS425 Luiza cultivar was selected.

Thus, the present study aimed to investigate, through SSR marker fingerprinting, whether the Cripps Pink cultivar is the male parent, and if not, to identify which was the pollen donor plant that pollinated the Imperatriz cultivar to generate the hybrid population, from which the cultivar SCS425 Luiza was selected.

## **MATERIAL AND METHODS**

#### **Plant material**

In the 2017/2018 growing season, leaves were collected from apple trees in the initial development phase of the Imperatriz, Baronesa, Cripps Pink, Luiza, Elenise, Venice and Isadora cultivars, which were used in the directed crosses of the 2000/2001 cycle of Epagri's Apple Breeding Program. The leaves were taken from the orchard at the Epagri's Experimental Station of Caçador (EECd), Santa Catarina State, Brazil. Young leaves not fully expanded from the respective cultivars were placed in plastic bags and stored at -20 °C until the moment of DNA extraction. The cultivars classified as progeny are Luiza, Venice, Elenise and Isadora, resulting from two directed crosses (Imperatriz  $\mathcal{Q}$  x Cripps Pink  $\mathcal{J}$ ; and Imperatriz  $\mathcal{Q}$  x Baronesa  $\mathcal{J}$ ) made in the spring of 2000 season.

## **DNA extraction**

For DNA extraction, the 2% CTAB (CetylTrimethylAmmonium Bromide) protocol, developed by Doyle and Doyle (1990), was used with adaptations for the species and laboratory conditions. Approximately 200 mg of plant tissue were placed in a high-resistance tube, with five metallic spheres inside, and then 1.0 mL of extraction buffer (2% CTAB; 1.4 M NaCl; 20 mM EDTA; 100 mM Tris-HCl pH 8.0; 2% PVP-40; 0.5%  $\beta$ -mercaptoethanol) heated to 60 °C. The maceration was performed in the Precellys<sup>\*</sup> equipment at 14,000 xg 8,000 rpm for 20 seconds, and the procedure was repeated six times, with intervals of 10 seconds. The other extraction steps followed the protocol developed by Doyle and Doyle (1990). After extraction, the DNA concentration (ng  $\mu$ L<sup>-1</sup>) and the A260/A280 and A260/A230 quality parameters were measured using a NanodropOne<sup>\*</sup> spectrophotometer (Thermo Scientific, Waltham, Massachusetts, U.S.). DNA samples were then diluted to the standard concentration of 10 ng  $\mu$ L<sup>-1</sup>.

# Polymerase chain reaction (PCR) conditions

The reactions were carried out in a multiplex scheme, according to the color of the fluorophore, the size of the amplified fragment and the PCR conditions, using a total of 19 pairs of SSR (*Simple Sequence Repeats*) primers developed exclusively for *Malus x domestica* Borkh. (Table 1). The choice of SSR primers was based on the literature data (Klabunde et al. 2016, Hawerroth et al. 2018) and sampling genomic regions from 12 of the 17 chromosomes of apple species. The PCR reactions were made using multiplex panels, as detailed in Table 1. For each PCR reaction, 1.2 ng of genomic DNA was used, plus 1x buffer, 0.2  $\mu$ M of each primer, 0.2  $\mu$ M of dNTPs, 1.5 mM of MgCl<sub>2</sub>, 1 U of Platinum<sup>®</sup> Taq DNA Polymerase (Invitrogen, Waltham, Massachusetts, U.S.), and ultrapure water to complete the final volume of 12.5  $\mu$ L. The reactions were performed in a Veriti<sup>™</sup> 96-Well Thermal Cycler (Applied Biosystems, Waltham, Massachusetts, U.S.), with the following cycling conditions: (I) initial denaturation of chain: 94 °C for 5 min; (II) denaturation: 94 °C for 45 sec; (III) annealing: 60 °C for 60 sec; (IV) extension of chain: 72 °C for 60 sec; and (V) final extension: 72 °C for 7 min. Steps II, III and IV were performed for 28 cycles for multiplex panels A, B, C, D, F and G; 30 cycles for panel E; and 31 cycles for panel H (Table 1).

# **Capillary electrophoresis**

The AB 3130 Genetic Analyzer (Applied Biosystems) was used for analyzing the PCR products. Each sample mix contained 1.0 µL of PCR products, 4.85 µL of HI-DI™ formamide (Applied Biosystems) and 0.15 µL of GS600 LIZ<sup>®</sup> (Applied

| М | SSR                   | Forward sequence (5' $\rightarrow$ 3')        | <i>Reverse</i> sequence $(5' \rightarrow 3')$ | Repetition Unit                        | Dye   | Range (bp) |
|---|-----------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|-------|------------|
|   | CH04d02 <sup>a</sup>  | CGTACGCTGCTTCTTTTGCT                          | CTATCCACCACCGTCAACT                           | (TC) <sub>19</sub>                     | 6-FAM | 118-146    |
| А | CH03a08 ª             | TTGGTTTGCTAGGAAAAGAAGG                        | AAGTTTATCGGGCCTACACG                          | (CT) <sub>19</sub>                     | HEX   | 146-218    |
|   | CH01f02 <sup>a</sup>  | ACCACATTAGAGCAGTTGAGG                         | CTGGTTTGTTTTCCTCCAGC                          | (AG) <sub>22</sub>                     | NED   | 174-206    |
|   | CH01g12 <sup>a</sup>  | CCCACCAATCAAAAATCACC                          | TGAAGTATGGTGGTGCGTTC                          | (AG) <sub>22</sub>                     | 6-FAM | 174-206    |
| В | CH01h01 ª             | GAAAGACTTGCAGTGGGAGC                          | GGAGTGGGTTTGAGAAGGTT                          | (TC) <sub>25</sub>                     | HEX   | 114-134    |
|   | CH02c11 <sup>a</sup>  | TGAAGGCAATCACTCTGTGC                          | TTCCGAGAATCCTCTTCGAC                          | (CT) <sub>15</sub> CC(CT) <sub>8</sub> | NED   | 219-239    |
|   | Hi03g06 <sup>b</sup>  | TGCCAATACTCCCTCATTTACC                        | GTTTAAACAGAACTGCACCACATCC                     | (TC) <sub>7</sub>                      | 6-FAM | 182-204    |
| С | CH03b06 ª             | GCATCCTTGAATGAGGTTCACT CCAATCACCAAATCAATGTCAC |                                               | (CT) <sub>20</sub>                     | HEX   | 111-131    |
|   | CH02d08 ª             | TCCAAAATGGCGTACCTCTC                          | GCAGACACTCACTCACTATCTCTC                      | (GA) <sub>20</sub>                     | VIC   | 210-254    |
|   | CH05d11 ª             | CACAACCTGATATCCGGGAC                          | GAGAAGGTCGTACATTCCTCAA                        | (AG) <sub>22</sub>                     | 6-FAM | 171-211    |
| D | CH02b03b <sup>a</sup> | ATAAGGATACAAAAACCCTACACAG                     | GACATGTTTGGTTGAAAACTTG                        | (CT) <sub>22</sub>                     | HEX   | 77-109     |
|   | NZ02b1 °              | CCGTGATGACAAAGTGCATGA                         | ATGAGTTTGATGCCCTTGGA                          | (GA) <sub>14</sub>                     | HEX   | 212-238    |
| Е | CH01f09 <sup>a</sup>  | ATGTACATCAAAGTGTGGATTG                        | GGCGCTTTCCAACACATC                            | (AG) <sub>22</sub>                     | HEX   | 125-160    |
| F | CH02b12 <sup>a</sup>  | GGCAGGCTTTACGATTATGC                          | CCCACTAAAAGTTCACAGGC                          | (CT) <sub>21</sub> TT(TC) <sub>5</sub> | 6-FAM | 101-143    |
| г | CH03c02 <sup>a</sup>  | TCACTATTTACGGGATCAAGCA                        | GTGCAGAGTCTTTGACAAGGC                         | (CT) <sub>22</sub>                     | HEX   | 116-136    |
| G | CH04c07 <sup>a</sup>  | GGCCTTCCATGTCTCAGAAG                          | CCTCATGCCCTCCACTAACA                          | (AG) <sub>23</sub>                     | 6-FAM | 98-135     |
| U | CH05c06 <sup>a</sup>  | ATTGGAACTCTCCGTATTGTGC                        | ATCAACAGTAGTGGTAGCCGGT                        | (CT) <sub>6</sub> CA(CT) <sub>20</sub> | HEX   | 104-126    |
|   | CH02b10 <sup>a</sup>  | CAAGGAAATCATCAAAGATTCAAG                      | CAAGTGGCTTCGGATAGTTG                          | (CT) <sub>19</sub>                     | 6-FAM | 121-159    |
| Н | CH05a05 <sup>a</sup>  | TGTATCAGTGGTTTGCATGAAC                        | GCAACTCCCAACTCTTCTTCT                         | (GA) <sub>21</sub>                     | HEX   | 198-230    |

Table 1. List of 19 pairs of SSR primers used to genotype apple (Malus x domestica Borkh.) cultivars and their respective oligonucleotide sequences, units of repetition (UR), fluorophore (Dye), multiplex panel (M) and size range of amplified PCR fragments expected (bp)

<sup>a</sup> Liebhard et al. (2002); <sup>b</sup> Silfverberg-Dilworth et al. (2006); <sup>c</sup> Guilford et al. (1997).

Biosystems, Waltham, Massachusetts, U.S.). Peak interpretation, allele size calling and genotyping were performed using the GeneMapper<sup>®</sup> Id-X software, v. 1.2.

#### Data set analysis

The allele frequencies used in the present work were calculated based on the previous genotyping data of the SCS425 Luiza cultivar and 27 other apple tree cultivars used as parental germplasm in the hybridization routine of the Epagri's Apple Breeding Program, namely: Imperatriz, Baronesa, Cripps Pink, Venice, Elenise, Isadora, Fuji, Fuji Suprema, Fuji Precoce, Royal Gala, Lisgala, Castel Gala, Gala Gui, NJ-76, Coop-14, Joaquina, Fred Hough, Kinkas, D1R103T245, Primícia, Princesa, Condessa, Duquesa, Daiane, Monalisa, Serrana and Granny Smith. Pedigree analysis was performed using the Familias 3 software (Kling et al. 2014). 'Imperatriz' was fixed as female parent in all tests. The cultivars 'Baronesa' and 'Cripps Pink' were tested as possible male parent. To be considered as a male parent, the cultivar must show a total *Likelihood ratio* (LR) value greater than or equal to 10,000. In addition, exclusion markers were also analyzed to support the interpretation of exclusion of a possible male parent based on LR values. Furthermore, based on the alleles of each genotype, a dissimilarity matrix was made using the Jaccard method, which was used for grouping genotypes in a UPGMA dendrogram (Unweighted Pair Group Method with Arithmetic Mean). The UPGMA grouping adjustment to the dissimilarity matrix was determined by the cophenetic correlation coefficient based on the average dissimilarity to separate the groups (Sokal and Rohlf 1962). The significance of the cophenetic correlation was calculated using t and Mantel tests. The grouping and cophenetic correlation analysis were performed using the computer program GENES (Cruz 2013).

#### **RESULTS AND DISCUSSION**

The approach for pedigree checking for SCS425 Luiza cultivar in the present work followed the same methods used in human and animal paternity tests. Although this approach is rarely used for plants (Meagher 1986), there was a need to elucidate the correct genealogy of the cultivar SCS425 Luiza. The main factor that led to doubt in 'Luiza' genealogy was the identification of an unexpected self-incompatibility *S* allele for the cross of 'Imperatriz' x 'Cripps Pink' (Brancher et al. 2020). The original information was that the cultivar SCS425 Luiza is a result of cross between Imperatriz ( $\mathcal{Q}$ ) and

Cripps Pink ( $\mathcal{O}$ ) (Denardi et al. 2019a), but after genotyping the alleles of the *S* allelic series, responsible for the control of gametophytic self-incompatibility between apple trees, the  $S_s S_g$  genotype was identified for 'Luiza' (Brancher et al. 2020). As the cultivar Imperatriz has the genotype  $S_3 S_5$  and 'Cripps Pink' has the genotype  $S_2 S_{23}$  (Albuquerque Junior

 Table 2. New apple cultivars (self-incompatibility genotype) released by Epagri's Apple Breeding Program, recorded pedigree, S alleles and likelihood ratio (LR) value based on their respective parents (female 2 and male 3)

| Cultivar                              | Ŷ                         | ð                                             | LR value     |
|---------------------------------------|---------------------------|-----------------------------------------------|--------------|
| Luiza <sup>1</sup> ( $S_{s}S_{g}$ )   | Imperatriz $(S_3S_5)$     | Cripps Pink (S <sub>2</sub> S <sub>23</sub> ) | 0            |
| Venice <sup>2</sup> $(S_3S_9)$        | Imperatriz $(S_3S_5)$     | Baronesa $(S_3S_9)$                           | 1.996.340,6  |
| Elenise <sup>3</sup> $(S_3 S_{23})$   | Imperatriz $(S_3S_5)$     | Cripps Pink $(S_2S_{23})$                     | 311.786,6    |
| Isadora <sup>4</sup> ( $S_5 S_{23}$ ) | Imperatriz $(S_{3}S_{5})$ | Cripps Pink $(S_2 S_{23})$                    | 40.621.290,3 |

<sup>1</sup> Denardi et al. (2019a); <sup>2</sup> Denardi et al. (2020); <sup>3</sup> Denardi et al. (2019b); <sup>4</sup> Denardi et al. (2023).

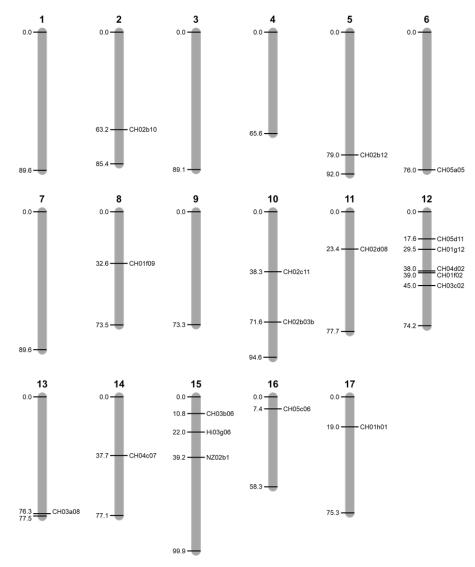



Figure 1. A diagram of genetic map of apple (Malus x domestica Borkh.), indicating the targeted positions of the 19 pairs of SSR primers on 12 of the 17 chromosomes (cM). The diagram was built from the database available at http://www.rosaceae.org/search/markers.

et al. 2011), it is unlikely that 'SCS425 Luiza' is a cross progeny between these two cultivars, because none of them has the  $S_g$  allele. However, this occurrence is not unique among the apple tree breeding programs around the world. Divergences in the genealogy of hybrid apple cultivars have also been identified via genotyping of *S* alleles in the Kent cultivar (Sakurai et al. 2000).

In an attempt to identify the correct male parent of Luiza cultivar, the three parental cultivars (Imperatriz, Baronesa and Cripps Pink) that were used in the crossing programs of Epagri's Apple Breeding Program in the same year, as well as four sister cultivars originating from the same combinations (Venice, Elenise, Isadora and Luiza) were tested.

Imperatriz was the female parent for 'Venice', 'Elenise', 'Isadora' and 'Luiza'. Baronesa was the male parent for 'Venice', and Cripps Pink was the male parent for 'Elenise' and 'Isadora'. The observed *likelihood ratio* (LR) values were much higher than 10,000 for 'Venice', 'Elenise' and 'Isadora', corroborating the pedigrees previously reported by the breeders for these three cultivars (Table 2). However, the LR value for SCS425 Luiza cultivar testing was equal to zero when the genealogy reported by Denardi et al. (2019b) was checked out. It indicates that 'Cripps Pink' is not the male parent of 'Luiza' (Table 2).

The 19 pairs of SSR primers amplified (Figure 1) a total of 126 alleles in the cultivars set evaluated, the mean number of alleles identified for each genome region was 6.63. Two alleles were observed in each genome region, suggesting diploid genotypes for all cultivars. The alleles identified at each genome region in Luiza, Venice, Elenise, Isadora, Imperatriz, Baronesa and Cripps Pink cultivars are shown in Table 3.

It is observed in Table 3 that the cultivars Venice, Elenise and Isadora follow the expected segregation pattern for all markers amplified in PCR considering the genotypes of male and female parents, respectively, as reported in the literature (Denardi et al. 2019a, 2019b, 2020, Denardi et al. 2023). However, for the cultivar Luiza, of the 19 evaluated genome regions, only 9 regions followed the expected pattern of allele segregation, showing the presence of only one allele common to the Cripps Pink cultivar, previously described as the male parent. However, when carefully observing the result of the genotypic characterization of Luiza cultivar for all 19 SSR markers, it appeared that all alleles followed an expected segregation pattern if the male parent considered was cv. Baronesa (Table 3), which corroborates the results

|            | Alleles amplified (bp)      |            |                                     |            |                       |                  |            |                   |            |                    |            |                    |            |            |
|------------|-----------------------------|------------|-------------------------------------|------------|-----------------------|------------------|------------|-------------------|------------|--------------------|------------|--------------------|------------|------------|
| SSR marker | Imperatriz<br>Female parent |            | Baronesa<br>Male parent suggested 1 |            | Cri                   | Luiza<br>Progeny |            | Venice<br>Progeny |            | Elenise<br>Progeny |            | Isadora<br>Progeny |            |            |
|            |                             |            |                                     |            | Male pare             |                  |            |                   |            |                    |            |                    |            |            |
| CH01f02    | 182                         | 204        | 168                                 | 182        | 178                   | 206              | <u>182</u> | <u>182</u>        | 168        | 204                | 204        | 206                | 204        | 206        |
| CH01f09    | 126                         | 136        | <u>136</u>                          | <u>136</u> | <u>126</u>            | <u>126</u>       | 126        | 136               | <u>136</u> | <u>136</u>         | 126        | 136                | <u>126</u> | <u>126</u> |
| CH01g12    | 103                         | 143        | 125                                 | 143        | 99                    | 179              | 103        | 143               | 125        | 143                | 99         | 143                | 143        | 179        |
| CH01h01    | 117                         | 127        | 113                                 | 127        | 109                   | 115              | 113        | 117               | 117        | 127                | 115        | 127                | 109        | 127        |
| CH02b03b   | 72                          | 90         | 72                                  | 92         | 72                    | 92               | 72 92      |                   | 72         | 72                 | 72         | 72                 | 72         | 92         |
| CH02b10    | 113                         | 119        | 127                                 | 151        | 115                   | 119              | 113        | 127               | 119        | 151                | <u>119</u> | <u>119</u>         | <u>119</u> | <u>119</u> |
| CH02b12    | <u>135</u>                  | <u>135</u> | 131                                 | 135        | <u>135</u> <u>135</u> |                  | <u>135</u> | <u>135</u>        | 131        | 135                | <u>135</u> | <u>135</u>         | <u>135</u> | <u>135</u> |
| CH02c11    | 229                         | <u>229</u> | 225                                 | 231        | 203 229               |                  | 225        | 229               | 225        | 229                | 203        | 229                | 203        | 229        |
| CH02d08    | <u>252</u>                  | <u>252</u> | 208                                 | 222        | 208 220               |                  | 222        | 252               | 222        | 252                | 220        | 252                | 220        | 252        |
| CH03a08    | 156                         | 186        | <u>180</u>                          | <u>180</u> | 180                   | 242              | 156        | 180               | 180        | 186                | 156        | 180                | 180        | 186        |
| CH03b06    | 111                         | 115        | <u>111</u>                          | <u>111</u> | 111                   | 133              | 111        | 115               | 111        | 115                | 111        | 115                | 111        | 115        |
| CH03c02    | <u>121</u>                  | <u>121</u> | 101                                 | 157        | 121                   | 123              | 121        | 157               | 101        | 121                | <u>121</u> | <u>121</u>         | <u>121</u> | <u>121</u> |
| CH04c07    | 92                          | 132        | 104                                 | 132        | 92                    | 104              | 92         | 104               | 92         | 132                | 104        | 132                | 92         | 104        |
| CH04d02    | 115                         | 117        | 115                                 | 117        | <u>117</u> <u>117</u> |                  | <u>115</u> | <u>115</u>        | <u>117</u> | <u>117</u>         | <u>117</u> | <u>117</u>         | <u>117</u> | <u>117</u> |
| CH05a05    | 204                         | 218        | <u>218</u>                          | <u>218</u> | 216                   | 218              | 204        | 218               | 204        | 218                | 204        | 218                | 216        | 218        |
| CH05c06    | 111                         | 119        | 97                                  | 111        | 97                    | 121              | 97         | 111               | <u>111</u> | <u>111</u>         | 97         | 111                | 97         | 111        |
| CH05d11    | 168                         | 172        | 178                                 | 192        | 164                   | 166              | 172        | 192               | 168        | 192                | 164        | 172                | 164        | 168        |
| Hi03g06    | 190                         | 190        | 190                                 | 194        | 176                   | 198              | 190        | 194               | <u>190</u> | <u>190</u>         | 176        | 190                | 176        | 190        |
| NZ02b1     | 213                         | 235        | <u>213</u>                          | <u>213</u> | 213 225               |                  | 213        | 235               | 213        | 235                | 213        | 235                | 213        | 235        |

Table 3. SSR alleles amplified by 19 pairs of SSR primers from the cultivars Imperatriz, Baronesa, Cripps Pink, Luiza, Venice, Elenise and Isadora

Alleles highlighted in bold and underlined are in homozygosis.

previously observed. It suggests that the Cripps Pink cultivar is not the true male parent of the cv. Luiza, and that the 'Baronesa' tree is the pollen donor.

In the grouping dendrogram made from the dissimilarity data matrix calculated between cultivars for the 19 SSR markers (Figure 2), a great similarity can be observed between Imperatriz and Luiza cultivars, reinforcing the already known genetic relationship between both as reported by Denardi et al. (2019b). However, it is also observed that Luiza cultivar showed greater genetic similarity to the group of Venice and Baronesa cultivars, and not to the group that includes the cultivar Cripps Pink. This is another indication that the Cripps Pink cultivar is not the male parent used to generate the population from which the Luiza cultivar was selected.

Based on the paternity analysis, the Cripps Pink cultivar was also discarded as a male parent, since the calculated LR (*likelihood ratio*) value was equal to zero. Furthermore, from the 19 SSR markers tested, more than half (10 genomic regions) were characterized as exclusion alleles when considering Cripps Pink cultivar as the male parent of 'Luiza'

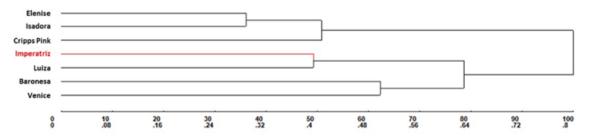



Figure 2. Dendrogram of the cultivars Imperatriz, Baronesa, Cripps Pink, Luiza, Venice, Elenise and Isadora by the UPGMA method based on their SSR allele dissimilarity matrix produced by 19 pairs of SSR primers.

|           | Hypothesis 1                                                       |      |         |            |            |       |     |       | Hypothesis 2                                                                          |         |         |     |         |     |  |  |  |
|-----------|--------------------------------------------------------------------|------|---------|------------|------------|-------|-----|-------|---------------------------------------------------------------------------------------|---------|---------|-----|---------|-----|--|--|--|
| SSR       | Imperatriz ( $\mathbb{Q}$ ) x Cripps Pink ( $\mathbb{C}$ ) = Luiza |      |         |            |            |       |     |       | Imperatriz ( $\stackrel{	ext{P}}{+}$ ) x Baronesa ( $\stackrel{	ext{O}}{-}$ ) = Luiza |         |         |     |         |     |  |  |  |
| marker    | LR                                                                 | Impe | eratriz | Cripp      | s Pink     | Luiza |     | LR    | Impe                                                                                  | eratriz | Barones |     | a Luiza |     |  |  |  |
| CH01f02   | 0.000                                                              | 182  | 204     | <u>178</u> | <u>206</u> | 182   | 182 | 1.558 | 182                                                                                   | 204     | 168     | 182 | 182     | 182 |  |  |  |
| CH01f09   | 1.219                                                              | 126  | 136     | 126        | 126        | 126   | 136 | 1.219 | 126                                                                                   | 136     | 136     | 136 | 126     | 136 |  |  |  |
| CH01g12   | 0.000                                                              | 103  | 143     | <u>99</u>  | <u>179</u> | 103   | 143 | 0.933 | 103                                                                                   | 143     | 125     | 143 | 103     | 143 |  |  |  |
| CH01h01   | 0.000                                                              | 117  | 127     | <u>109</u> | <u>115</u> | 113   | 117 | 2.157 | 117                                                                                   | 127     | 113     | 127 | 113     | 117 |  |  |  |
| CH02b03b  | 2.793                                                              | 72   | 90      | 72         | 92         | 72    | 92  | 2.793 | 72                                                                                    | 90      | 72      | 92  | 72      | 92  |  |  |  |
| CH02b10   | 0.000                                                              | 113  | 119     | <u>115</u> | <u>119</u> | 113   | 127 | 4.000 | 113                                                                                   | 119     | 127     | 151 | 113     | 127 |  |  |  |
| CH02b12   | 1.557                                                              | 135  | 135     | 135        | 135        | 135   | 135 | 0.778 | 135                                                                                   | 135     | 131     | 135 | 135     | 135 |  |  |  |
| CH02c11   | 0.000                                                              | 229  | 229     | <u>203</u> | <u>229</u> | 225   | 229 | 3.493 | 229                                                                                   | 229     | 225     | 231 | 225     | 229 |  |  |  |
| CH02d08   | 0.000                                                              | 252  | 252     | <u>208</u> | <u>220</u> | 222   | 252 | 1.748 | 252                                                                                   | 252     | 208     | 222 | 222     | 252 |  |  |  |
| CH03a08   | 1.166                                                              | 156  | 186     | 180        | 242        | 156   | 180 | 2.331 | 156                                                                                   | 186     | 180     | 180 | 156     | 180 |  |  |  |
| CH03b06   | 0.757                                                              | 111  | 115     | 111        | 133        | 111   | 115 | 1.514 | 111                                                                                   | 115     | 111     | 111 | 111     | 115 |  |  |  |
| CH03c02   | 0.000                                                              | 121  | 121     | <u>121</u> | <u>123</u> | 121   | 157 | 4.673 | 121                                                                                   | 121     | 101     | 157 | 121     | 157 |  |  |  |
| CH04c07   | 2.334                                                              | 92   | 132     | 92         | 104        | 92    | 104 | 2.334 | 92                                                                                    | 132     | 104     | 132 | 92      | 104 |  |  |  |
| CH04d02   | 0.000                                                              | 115  | 117     | <u>117</u> | <u>117</u> | 115   | 115 | 2.334 | 115                                                                                   | 117     | 115     | 117 | 115     | 115 |  |  |  |
| CH05a05   | 0.700                                                              | 204  | 218     | 216        | 218        | 204   | 218 | 1.401 | 204                                                                                   | 218     | 218     | 218 | 204     | 218 |  |  |  |
| CH05c06   | 2.002                                                              | 111  | 119     | 97         | 121        | 97    | 111 | 2.002 | 111                                                                                   | 119     | 97      | 111 | 97      | 111 |  |  |  |
| CH05d11   | 0.000                                                              | 168  | 172     | <u>164</u> | <u>166</u> | 172   | 192 | 4.004 | 168                                                                                   | 172     | 178     | 192 | 172     | 192 |  |  |  |
| Hi03g06   | 0.000                                                              | 190  | 190     | <u>176</u> | <u>198</u> | 190   | 194 | 7.042 | 190                                                                                   | 190     | 190     | 194 | 190     | 194 |  |  |  |
| NZ02b1    | 0.824                                                              | 213  | 235     | 213        | 225        | 213   | 235 | 1.647 | 213                                                                                   | 235     | 213     | 213 | 213     | 235 |  |  |  |
| LR total: | 0.000 2.375.957,07                                                 |      |         |            |            |       |     |       |                                                                                       |         |         |     |         |     |  |  |  |

Table 4. Likelihood ratio (LR) values and the size of fragments amplified by 19 pairs of SSR primers in paternity analysis of the SCS425 Luiza cultivar

Alleles highlighted in bold and underlined represent alleles of exclusion, which were not inherited from the parent under test.

(Table 4), since any of the alleles of the supposed parent could inherit into the supposed descendant progeny (cv. Luiza). On the other hand, when considering Imperatriz and Baronesa to be female and male parents, respectively, a high LR (2,375,957.07) was observed (Table 4), which is much higher than that recommended in the literature ( $\geq$  10,000) to accept a given cultivar as a paternal parent in a genealogy under checking analysis.

Therefore, the Cripps Pink cultivar is excluded as the male parent of the SCS425 Luiza cultivar. By analyzing molecular fingerprints of the 19 SSR markers used, it is safe to state that the paternal parent of 'SCS425 Luiza' is the Baronesa cultivar. Thus, the SCS425 Luiza cultivar is derived from the cross between Imperatriz ( $\bigcirc$ ) and Baronesa ( $\circlearrowleft$ ), but not from the cross between Imperatriz ( $\bigcirc$ ) and Cripps Pink ( $\circlearrowright$ ) as reported by Denardi et al. (2019b). During the routine process of breeding and selection of trees in the Epagri's Apple Breeding Program, there must have been some mistake in the manipulation of pollen, hybrid seeds or young trees, or there could also have been an exchange of trees identification tags between different segregating populations performed in that season. So, it shows the high importance of careful work by the Breeding Program employees as a way to avoid mistakes of this nature.

## ACKNOWLEDGEMENTS

The authors wish to thank the Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Universidade do Estado de Santa Catarina (UDESC), and Universidade Federal de Santa Catarina (UFSC) for financial support to this research and for the scholarships granted.

## REFERENCES

- Albuquerque Junior CL, Denardi F, Dantas ACM, Nodari RO, Albuquerque CL, Denardi F, Mesquita Dantas AC and Nodari RO (2011) The selfincompatible RNase S-alleles of Brazilian apple cultivars. **Euphytica** 181: 277-284.
- Batlle I, Alston FH and Evans KM (1995) The use of the isoenzymic marker gene Got-1 in the recognition of incompatibility S alleles in apple. **Theoretical and Applied Genetics 90**: 303-306.
- Brancher TL, Hawerroth MC, Kvitschal MV, Manenti DC and Guidolin AF (2020) Self-incompatibility alleles in important genotypes for apple breeding in Brazil. Crop Breeding and Applied Biotechnology 20: 1-9.
- Brown S (2012) Apple. In Fruit breeding. Springer US, Boston, p. 329-367.
- Cruz CD (2013) GENES a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy 35: 271-276.
- De Franceschi P, Cova V, Tartarini S and Dondini L (2016) Characterization of a new apple S-RNase allele and its linkage with the Rvi5 gene for scab resistance. **Molecular Breeding 36**: 1-11.
- Denardi F, Kvitschal MV, Argenta LC, Couto M, Araujo L (2023) SCS443 Isadora: late ripening apple cultivar with very high fruit storage ability. **Revista Brasileira de Fruticultura 45**: e-161.
- Denardi F, Kvitschal MV, Hawerroth MC and Argenta LC (2019a) 'SCS425 Luiza': new apple cultivar with medium chilling requirement and resistant to glomerella leaf spot (colletotrichum spp.). **Revista Brasileira de Fruticultura 41**: e-109.
- Denardi F, Kvitschal MV, Hawerroth MC and Argenta LC (2019b) SCS426 Venice: new apple cultivar with glomerella leaf spot resistance and

picking time in march. Crop Breeding and Applied Biotechnology 19: 481-486.

- Denardi F, Kvitschal MV, Hawerroth MC and Argenta LC (2020) SCS427 Elenise: late-ripening apple variety of good storability and resistance to Glomerella Leaf Spot. **Revista Agropecuária Catarinense 33**: 32-36.
- Doyle JJ and Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
- FAO Food and Agriculture Organization of the United Nations (2022) FAOSTAT. Crop production quantity. Available at <a href="http://www.fao.org/faostat/en/#data/QC>">http://www.fao.org/faostat/en/#data/QC></a>. Accessed on May 4, 2021.
- Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H and Forster R (1997) Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics 94: 249-254.
- Hawerroth MC, Brancher TL and Kvitschal MV (2018) Dissimilaridade entre genótipos elite de macieira da Epagri com base na caracterização fenotípica e molecular. **Agropecuária Catarinense 31**: 67-72.
- Klabunde GHF, Junkes CFO, Tenfen SZA, Dantas ACM, Furlan CRC, Mantovani A, Denardi F, Boneti JI and Nodari RO (2016) Genetic diversity and apple leaf spot disease resistance characterization assessed by SSR markers. Crop Breeding and Applied Biotechnology 16: 189-196.
- Kling D, Tillmar AO and Egeland T (2014) Familias 3 Extensions and new functionality. Forensic Science International: Genetics 13: 121-127.
- Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E and Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). **Molecular Breeding 10**: 217-241.

- Matsumoto S (2014) Apple pollination biology for stable and novel fruit production: Search system for apple cultivar combination showing incompatibility, semicompatibility, and full-compatibility based on the S-RNase allele database. **International Journal of Agronomy 2014**: 1-9.
- Meagher TR (1986) Analysis of paternity within a natural population of *Chamaelirium luteum*. 1. Identification of most-likely male parents. **The American Naturalist 128**: 199-215.
- Petri JL (2002) Fatores edafoclimáticos. In EPAGRI (ed) A cultura da macieira. EPAGRI, Florianópolis, p. 105-112.

Phipps JB, Robertson KR, Rohrer JR and Smith PG (1991) Origins and

evolution of subfam. Maloideae (Rosaceae). Systematic Botany 16: 303.

- Sakurai K, Brown SK and Weeden N (2000) Self-incompatibility alleles of apple cultivars and advanced selections. Hortscience 35: 116-119.
- Silfverberg-Dilworth E, Matasci CL, Weg WE Van de, Kaauwen MPW Van, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C and Patocchi A (2006) Microsatellite markers spanning the apple (*Malus x domestica* Borkh.) genome. Tree Genetics & Genomes 2: 202-224.
- Sokal RR and Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11: 33.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.