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Abstract: Image analysis is a straightforward and non-destructive technique 
used to identify haploids/diploids in maize. This study was carried out to 
characterize haploid/diploid maize kernels based on color space data and to 
compare the success of classification models developed using different machine 
learning techniques in maize. In this study, haploid (n=390) and diploid (n=495) 
kernels obtained by crossing five different donors with a Navajo inducer were 
used. Kernel images were collected using a standard desktop scanner. After 
extracting the RGB color space data, it was converted to hue-saturation-value 
(HSV) and Lab color spaces. Seven combinations of color space datasets were 
used as predictor variables. Support vector machines (SVM-C), random forest 
(RF), classification and regression tree (CART) methods were used to develop 
ML models. The classification success of the models was found between 0.74 
and 0.86. The Support Vector Machines model (Accuracy = 0.86) created with 
RGB+Lab input data was the best.
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INTRODUCTION

The in-vivo doubled haploid technique is one of the techniques proven to 
develop 100% homozygous lines in maize breeding. There are two types of 
use in practice for doubling of chromosome numbers of the plants in the in 
vivo conditions, which are named as “in vivo maternal” and “in vivo paternal” 
methods (Chaikam et al. 2019). Both relied on using special genotypes called 
“inducer” lines. Since the discovery that haploid seeds are formed in donor 
materials hybridizing with these inducers, numerous inducer lines with different 
features have been developed (Choe 1959, Chalky 1994, Prigge et al. 2012, 
Kalinowska et al. 2019, Uliana Trentin et al. 2020). There are three main steps 
of in-vivo maternal or paternal doubled haploid techniques in practice. The 
first step is the hybridization of the donor material with inducer line, and the 
second step is selection of haploid samples based on the color changes in 
the seeds or the root of seedlings, and the last step is chemical treatment for 
chromosome doubling after the selfing plants by growing them under field 
or greenhouse conditions (Röber et al. 2005, Chidzanga et al. 2017). Within 
these steps, separation of haploid samples from the others is one of the most 
important processes for the success of the technique. In the classical method, 



2 Crop Breeding and Applied Biotechnology - 23(4): e45322349, 2023

F Kahrıman et al.

seed classification is performed using the method based on visual phenotypic markers distinguishable by human eyes. 
However, it takes a long time and its margin of error for classification is high. For this reason, alternative methods that 
can perform seed discrimination in a more practical way are emphasized. There are numerous approaches to separate 
haploid and diploid seeds such as stomata measurements (Ribeiro et al. 2022), flow cytometry (Baleroni et al. 2021), near 
infrared reflectance (NIR) spectroscopy (Jones et al. 2012, Liu et al. 2017, Cui et al. 2019), near infrared transmittance 
(NIT) spectroscopy (Lin et al. 2017) and image analysis (Veeramani et al. 2018). Among these methods, image analysis 
is one of the alternatives with significant advantages.

Image analysis is practically used in solving classification, detection or characterization problems encountered in 
many different fields today. The use of this method in the discrimination of haploid/diploid maize kernels has also 
been the subject of different scientific studies. There are a considerable number of papers showing that separation 
of haploid/diploid kernels can be done through image data analysis, especially samples obtained using inducer lines 
carrying Navajo genes (Altuntaş et al. 2018, Veeramani et al. 2018, Altuntaş et al. 2019, Altuntaş and Kocamaz 2019). 
The input data used in these studies are data from different color spaces obtained from maize haploid and diploid kernel 
samples. Color spaces can be used for different purposes, such as sample characterization and feature extraction based 
on image analysis. The RGB color space, which is accepted as basic color space today, covers three basic channels (Red, 
Green, Blue); apart from it, there are also color spaces such as hue-saturation-value (HSV) and luminance-red/green 
axis-blue/yellow axis (Lab). Studies on the discrimination of haploid/diploid maize kernels based on color space data 
are also found in the literature (Altuntaş and Kocamaz 2019). However, in our best knowledge, there is no study on the 
selection of haploid samples using different color spaces. 

Among the techniques used to develop sample classification models, machine learning methods are among the ones 
that give successful results. Different studies have been conducted using machine learning techniques to distinguish 
haploid/diploid maize seeds, and model success depends not only on the algorithm of the technique used, but also on 
the size of the input data, its qualities, and its discrimination-enhancing properties (Zhang et al. 2013). In this respect, 
it is useful to investigate the color space effect in detail in models created with different machine learning methods.

This study was carried out to i) investigate the differences in haploid and diploid maize kernels based on the mean 
values of the channels of the color spaces ii) evaluate relationships between features extracted from color spaces, and 
iii) to examine the classification success of different machine learning methods when the color space data are used 
separately or together.

MATERIAL AND METHODS

In this study, a total of 885 seed samples obtained from crossing five donors with an inducer line were used 
as material. Donors are F2 materials obtained from maize breeding studies carried out in Çanakkale Onsekiz Mart 
University, Faculty of Agriculture, Department of Field Crops. All donors have the dent type of kernel morphology. 
Inducer line (CIM2GTAIL-P2) was used with permission from The International Maize and Wheat Improvement Center 
(CIMMYT) for scientific studies in the Field Crops Department of Çanakkale Onsekiz Mart University (Turkey), Faculty 
of Agriculture (Table 1).

Induction crossing was performed under field conditions in the year of 2020 in Çanakkale, Turkey. Each donor was 
planted to four-rowed plots with a 70x20 cm plant density. 
When the plants reached the flowering stage, pollination 
was carried out with at least 10 plants belonging to each 
donor genotype by using the CIM2GTAIL-P2 inducer 
line as the pollen source (male parent). The controlled 
pollination method suggested by Kahrıman (2016) was 
used in the induction crossing. In particular, the bulk 
pollination method was used. In this context, the ears of 
the donor plants were protected with shoot bags before 
showing the silks. When protected ears form the silk, 
they are pollinated using the collected pollen from 5-10 

Table 1. Donor and inducer materials used in this study

Code General Features Source
DON1 Donor material, Experimental F2 COMU
DON2 Donor material, Experimental F2 COMU
DON3 Donor material, Experimental F2 COMU
DON4 Donor material, Experimental F2 COMU
DON5 Donor material, Experimental F2 COMU
CIM2GTAIL-P2 Second generation inducer line CIMMYT

COMU: Çanakkale Onsekiz Mart University, CIMMYT: International Maize and Wheat 
Improvement Center.
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plants of inducer line. The harvest was carried out by hand and DH0 seeds obtained from induction crosses were kept 
at +4 °C for use in the further steps.

The classification of putative haploid kernels was made according to the coloration of the embryo and crown area 
in DH0 kernels. If there was coloration in the crown area and without coloration in the embryo of   the seed examined, 
this kernel was considered as haploid, and if there was coloration in both the crown area and the embryo region, this 
kernel was evaluated as diploid.

Image classification at the single seed level was performed by making some revisions to the method suggested 
by Altuntaş et al. (2018). The images of the kernels, which were visually separated by the eye, were recorded by the 
embryo side in the desktop scanner (HP Scanjet 3970, USA) with jpeg extension. Digital images were saved with 300 dpi 
resolution. Also, a specific black background was used to obtain clean kernel images, and this background was removed 
before the extraction of image features. A total of 5 different moments (mean, minimum, maximum, standard deviation, 
and median) were extracted to be used in modeling studies for each channel of color spaces. Thus, we obtained 45 
different features for all color spaces. Segmentation and feature extraction operations were carried out with the R 
program using EBImage and colorspace packages (R Core Team 2019). These data were kept as an excel file to be used 
in model development studies.

To develop classification models, six different features (mean, standard deviation, median, mode, skewness, 
kurtosis) extracted from the images were taken as predictive variables. Support vector machines (SVM), the 
Classification and Regression Tree (CRT) and Random Forest (RF) methods were used. SVM identifies critical support 
vectors, data points that define the edge between different classes in space. It maximizes the margin between these 
classes by finding a hyperplane or line that separates them. SVM’s advantage lies in focusing on support vectors, 
not the entire dataset, making large training sets manageable. SVM performs well in non-linear, sparse, and high-
dimensional problems. However, its sensitivity to variable settings poses a challenge, requiring careful configuration 
for optimal results. Decision trees, also known as CRT, have been fundamental in data mining and are a cornerstone 
of classic machine learning algorithms. Since their inception in the 1980s, they have enjoyed widespread usage as 
a model-building tool for data mining based on machine learning. Their appeal lies in the straightforwardness of 
the resulting model, particularly smaller decision trees which are easily comprehensible, interpretable, and can be 
effectively communicated to management. The structure of decision trees is versatile, capable of representing both 
classification and regression models. RF is an ensemble of unpruned decision trees used for large datasets with many 
input variables. Each tree is built from a random subset of the training data, and they collectively vote on outcomes. 
This approach offers robustness against noise and overfitting. Randomness in dataset and variable selection enhances 
resilience and computational efficiency. Random forests require minimal data preprocessing, adapt well to variable 
selection, and excel in reducing overfitting risks through ensemble techniques. All models were developed in the 
R program using the rattle package (R Core Team 2019). Default parameters are assigned in the rattle package to 
develop classification models.

Boxplot plots were used to compare haploid diploid seed groups based on the data of the channels belonging to 
the color spaces. While creating these graphs, the averages of each channel of three different color spaces were used. 
The differences between the mean values of each channel were compared with the t test. The ggstatsplot package in 
the R package program was used to create the graphs.

The Spearman correlation test was used to examine the relationships between the features extracted from the color 
spaces. In order to examine these relationships according to haploid and diploid seed groups, analyses were performed 
separately for two seed classes and the results of the 
correlation analysis were shown as network graphs. Only 
significant relationships (r>30) were shown in these graphs. 
In these graphs, blue color is used for positive correlation 
and red color is used for negative correlation. 

For comparison of the created classification models, the 
performance metrics predicted over the confusion matrix in 
Table 2. The performance metrics of the classification models 

Table 2. Confusion matrix template used in calculations for clas-
sification of haploid and diploid seeds

Actual
Prediction Haploid Diploid
Haploid TP FN
Diploid FP TN

FP: False positive, FN: False negative, TP: True positive, TN: True negative.
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were calculated according to the equations 1-6. These metrics are calculated for training and external validation sets 
separately. In these equations, TP, FP, TN, FN are true positive, false positive, true negative and false negative, respectively.

Sensitivity = TP

TP + FN
                                                                                       (1)

Specificity = TN

FP + TN
                                                                                       (2)

Pos.Pred.Val. = Sensitivity x Prevalence

((Sensitivity)xPrevalence)+((1 − Specificity)x(1 − Prevalence))
                                         (3)

Neg.Pred.Val = Specificity x (1 − Prevalence)

((1 − Sensitivity)xPrevalence)+((Specificity)x(1 − Prevalence))
                                         (4)

Balanced Accuracy = Sensitivity + Specificity

2
                                                 (5)

F1 Score = (1 + Beta2) x Precision x Recall

(Beta2 x Precision) + Recall
                                                        (6)

RESULTS AND DISCUSSION

The average values of color channels by haploid and diploid kernels are shown in Figure 1. Haploid and diploid kernels 
showed considerable differences according to different color spaces. Haploid samples had a higher average than the 
diploid group for all channels of RGB and HSV color spaces. Contrary to this situation, the average of the diploid group 
in the a channel in Lab color space was higher than the haploid group. Lab color-space consists of three channels, L, a 
and b; the L channel is related to lightness, and it takes values from 0 (black) to 100 (white). The a channel is related to 
red/green colors; positive and negative a* describe red and green values, respectively. Also, it is related to saturation. 
The b channel indicates yellowness or blueness; positive and negative b* describe yellow and blue values (Ly et al. 
2020). Results revealed that haploid samples had low saturation value because they had high value of channel a. The 
absence of anthocyanin formation in haploid samples, especially in the embryo section, may be a result of this situation.

To the best of our knowledge, there is no study comparing the characteristics of haploid and diploid maize kernels in 
different color spaces. Therefore, there is a limitation for the comparison of the results for the characteristics of haploid 
and diploid maize kernels of the current study with the previous findings. However, it was understood that there may be 
distinctive features among haploid and diploid kernels in terms of the channels of color-spaces. For example, haploids 
have lower average values for color channels than diploids, except the a* channel in the Lab color-space. This may be 
used as a distinguishing criterion for haploid and diploid maize kernels. As a matter of fact, the results of previous studies 
in which color space features were used to distinguish normal maize genotypes confirm this situation. Beyaz and Koç 
(2021) compared the maize genotypes having different endosperm characteristics, such as hybrid, sugar and dent maize 
in terms of average values of RGB color space. In this study, the order of average values of the color channels in all maize 
genotypes is R>G>B. On the other hand, genotypes rank as hybrid > sugar > dent in terms of channel averages. Another 
study focused on separating different maize genotypes using HSV color space and seed morphological characteristics, and 
its results revealed that color space data gave better classification results than morphological trait data (Yafie et al. 2020).

The correlation network graphs created to compare the relationships between the features of the color spaces based 
on the data obtained from the diploid and haploid kernels are presented in Figure 2. It was observed that the mean 
and median values of the green, red, L and V channels were positively correlated with the mean and median values of 
the blue channel for the color space data obtained from diploid kernels. It is observed that the A and H channels are 
clearly congregated, and their minimum values coexist on the network plot of diploid samples. The other group on the 
network was mostly related to the maximum, median and standard deviations (Figure 2a). Average and median values 
of green, blue, red, V and L channels in the network of haploid seed samples formed a cluster in the network graph for 
haploid kernels (Figure 2b). The relations and distributions of other moments for color channels showed differences. It 
is not easy to clarify all relationships between moments on the network plots due to the high number of features (n= 
45) extracted from color space datasets. However, we could say that some moments have characteristic relationships 
according to haploid and diploid sample sets.
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Figure 1. Plots of mean pixel values for RGB, HSV and Lab color spaces of haploid and diploid seed samples.
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The relationships between color space data obtained from haploid and diploid maize kernels were not discussed 
in current literature. On the other hand, the relationships between color characteristics of seeds and endosperms of 
cereals have been the subject of some studies. Zapotoczny and Majewska (2010) calculated correlations between RGB, 
HSV, HSL and Lab color-spaces data in wheat using different imaging devices. They found positive correlations in RGB 
and Lab color spaces, while negative correlations were observed for HSV and HSL color spaces. It was observed that 

Figure 2. Network plot showing the correlation between features of color spaces in diploid (a) and haploid (b) kernel samples.
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there were positive correlations between the parameters of RGB data in our study. This result is in agreement with the 
previous studies.

The numbers for TP, TN, FP and FN in the training and validation sets are shown in Table 3. In the training set, it was 
determined that the RF model was able to correctly classify haploid seeds for all data sets (Table 3). On the other hand, 
this classification success of RF models was not achieved in the validation set. Classification success was found to be 
close to each other in models created with training data with CART and SVM methods. In the training set, effects of using 
different color-spaces together in the prediction models showed differences according to the modeling technique used. It 
has been observed that in the use of color spaces in combinations of 2 and 3 the SVM model improves the classification 
success of TPs. However, this effect disappeared in the validation set and the classification success increased if the color 
spaces were used separately for the SVM method (Table 3).

The performance metrics allowed us to make more detailed evaluations about the robustness of the 
developed models. Considering the averages of the performance metrics (Table 4.), it was observed that all 
statistics of the RF method in the learning set were equal to 1. After the RF method, the most successful 
results were obtained from the SVM models for the learning set. Accuracy values were found between 0.82 
and 0.85 in the CART models. The fact that the sensitivity value is lower than the specificity value and the 
NPV value is below the PPV value in the CART technique indicates that the classification success of diploid 
seeds is low in this method. In other words, it can be said that the probability of classifying seeds that are 
actually diploid as haploid is high in the CART modeling. Evaluation model performances based only on 
sensitivity and specificity values could be biased if the numbers of samples are different in haploid and diploid 
classes (Altuntaş and Kocamaz 2019). Quality index or F1-Score should be considered for true decision on the 
robustness of the developed models.

Table 3. Evaluation of model performances for training and validation sets according to color spaces

 Training Set Validation Set
Model Color Space TP FN FP TN TP FN FP TN
CART HSV 245 79 31 264 124 47 13 82

Lab 272 52 39 256 132 39 26 69
RGB 273 51 43 252 140 31 22 73

HSV+Lab 284 40 45 250 137 34 37 58
RGB+HSV 240 84 19 276 124 47 10 85
RGB+Lab 282 42 37 258 131 40 26 69

RGB+HSV+Lab 248 76 27 268 126 45 18 77
 Mean 263 61 34 261 131 40 22 73
RF HSV 324 0 0 295 149 22 17 78

Lab 324 0 0 295 145 26 15 80
RGB 324 0 0 295 137 34 17 78

HSV+Lab 324 0 0 295 150 21 17 78
RGB+HSV 324 0 0 295 143 28 17 78
RGB+Lab 324 0 0 295 144 27 15 80

RGB+HSV+Lab 324 0 0 295 143 28 15 80
 Mean 324 0 0 295 144 27 16 79
SVM HSV 276 48 36 259 137 34 16 79

Lab 283 41 42 253 147 24 17 78
RGB 280 44 50 245 147 24 16 79

HSV+Lab 298 26 17 278 142 29 18 77
RGB+HSV 290 34 28 267 142 29 17 78
RGB+Lab 291 33 18 277 150 21 15 80

RGB+HSV+Lab 309 15 11 284 143 28 21 74
 Mean 290 34 29 266 144 27 17 78

FP: False positive, FN: False negative, TP: True positive, TN: True negative.
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The success of the models varied according to color space data used for model development based on the results 
obtained from the external validation set. For the CART modeling technique, the use of RGB+HSV data gave a more 
successful classification result than other data sets. In the RF technique, it has been observed that the best 
classification results were obtained from the prediction model where HSV and Lab color spaces are used together. 
It also noted that the averages of the performance metrics of the RF model were higher than those of the other 
modeling methods. However, the best prediction performance was obtained from SVM model in which the 
RGB+Lab data was used as the estimator (Sens=0.877, Spec=0.842, PPV=0.909, NPV=0.792, Accuracy=0.860, F1 
Score=0.893) (Table 4).

There are several studies in which image processing has given successful results for separating haploid and 
diploid maize samples. SVM, Random Forest (RF) and Logistic Regression methods provided a classification 
success of 87.6% in a previous study where kernel images were taken by the embryo side (Veeramani et al. 
2018). Zhang et al (2013) used the RGB data to separate haploid and cross kernels and they achieved the 
accuracy of 98.04% and 94.4% for haploids and diploids, respectively. Our results were in agreement with 
these findings. However, it should not be ignored that differences in imaging devices or image resolutions 
were used in the mentioned studies. Undoubtedly, the quality of the input data used in the studies also 
affected the model success. 

Also, we could compare our results with other techniques such as stomata traits and NIR measurements. 
Jones et al. (2012) achieved haploid discrimination with a success rate of 87.5% using NIR spectroscopy. Ribeiro 
et al. (2022) suggested that stomata density is an efficient parameter for distinguishing doubled haploids from 
false positives in in vivo haploid technique. The prediction model created in our study achieved similar success 
to these methods.

Table 4. The performance metrics of classification models according to color spaces

Training Set Validation Set
Modeling Tec. Color Space Sens. Spec. PPV NPV Acc. F1 Sens. Spec. PPV NPV Acc. F1
CART HSV 0.756 0.895 0.888 0.770 0.826 0.817 0.725 0.863 0.905 0.636 0.794 0.805

Lab 0.840 0.868 0.875 0.831 0.854 0.857 0.772 0.726 0.835 0.639 0.749 0.802
RGB 0.843 0.854 0.864 0.832 0.848 0.853 0.819 0.768 0.864 0.702 0.794 0.841

HSV+Lab 0.877 0.847 0.863 0.862 0.862 0.870 0.801 0.611 0.787 0.630 0.706 0.794
RGB+HSV 0.741 0.936 0.927 0.767 0.838 0.823 0.725 0.895 0.925 0.644 0.810 0.813
RGB+Lab 0.870 0.875 0.884 0.860 0.872 0.877 0.766 0.726 0.834 0.633 0.746 0.799

RGB+HSV+Lab 0.765 0.908 0.902 0.779 0.837 0.828 0.737 0.811 0.875 0.631 0.774 0.800
Mean 0.813 0.883 0.886 0.814 0.848 0.846 0.764 0.771 0.861 0.645 0.768 0.808

RF HSV 1.000 1.000 1.000 1.000 1.000 1.000 0.871 0.821 0.898 0.780 0.846 0.884
Lab 1.000 1.000 1.000 1.000 1.000 1.000 0.848 0.842 0.906 0.755 0.845 0.876
RGB 1.000 1.000 1.000 1.000 1.000 1.000 0.801 0.821 0.890 0.696 0.811 0.843

HSV+Lab 1.000 1.000 1.000 1.000 1.000 1.000 0.877 0.821 0.898 0.788 0.849 0.888
RGB+HSV 1.000 1.000 1.000 1.000 1.000 1.000 0.836 0.821 0.894 0.736 0.829 0.864
RGB+Lab 1.000 1.000 1.000 1.000 1.000 1.000 0.842 0.842 0.906 0.748 0.842 0.873

RGB+HSV+Lab 1.000 1.000 1.000 1.000 1.000 1.000 0.836 0.842 0.905 0.741 0.839 0.869
Mean 1.000 1.000 1.000 1.000 1.000 1.000 0.845 0.830 0.899 0.749 0.837 0.871

SVM HSV 0.852 0.878 0.885 0.844 0.865 0.868 0.801 0.832 0.895 0.699 0.816 0.846
Lab 0.873 0.858 0.871 0.861 0.866 0.872 0.860 0.821 0.896 0.765 0.840 0.878
RGB 0.864 0.831 0.848 0.848 0.847 0.856 0.860 0.832 0.902 0.767 0.846 0.880

HSV+Lab 0.920 0.942 0.946 0.914 0.931 0.933 0.830 0.811 0.888 0.726 0.820 0.858
RGB+HSV 0.895 0.905 0.912 0.887 0.900 0.903 0.830 0.821 0.893 0.729 0.826 0.861
RGB+Lab 0.898 0.939 0.942 0.894 0.919 0.919 0.877 0.842 0.909 0.792 0.860 0.893

RGB+HSV+Lab 0.954 0.963 0.966 0.950 0.958 0.960 0.836 0.779 0.872 0.725 0.808 0.854
Mean 0.894 0.902 0.910 0.885 0.898 0.902 0.842 0.820 0.894 0.743 0.831 0.867
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CONCLUSION

In this study, haploid and diploid maize kernels were differentiated based on their distinct features in various color 
spaces. Mean values of haploid kernels consistently exceeded those of diploids in most color channels, demonstrating 
the potential of mean color values for effective classification. The choice of modeling technique was crucial, with SVM 
applied to RGB+Lab data yielding the best results. This suggests that combining color space moments and selecting 
the right modeling approach improves separation accuracy. Also, using data from color spaces together eliminates the 
difficulties in implementing separate models based on different color space datasets. Future work could explore diverse 
color space combinations and modeling techniques for even better results. Using higher-resolution imaging devices 
and expanding the range of materials could also enhance classification. These models have promising applications in 
software and device development.
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