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ABSTRACT - A pedigree structure distributed in three different places was generated. For each offspring, phenotypic 
information was generated for five different ages (12, 30, 48, 66 and 84 months). The data file was simulated allowing some 
information to be lost (10, 20, 30 and 40%) by a random process and by selecting the ones with lower phenotypic values, 
representing the selection effect. Three alternative analysis were used, the repeatability model, random regression model and 
multiple-trait model. Random regression showed to be more adequate to continually describe the covariance structure of 

growth over time than single-trait and repeatability models, when the assumption of a correlation between successive 
measurements in the same individual was different from one another. Without selection, random regression and multiple-trait 
models were very similar. 
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INTRODUCTION 

Data obtained by successive measurements in one 

experimental unit or individual, the so called longitudinal 

data, can be analyzed using different strategies. In 

genetic breeding an interesting approach is to use 

random regression. Henderson Junior (1982) proposed 

the theory regarding the random regression coefficients, 

based on the principle that if a regression coefficient 

pertaining to each individual in an experiment is defined, 

and if the individuals are a random sample of the 

population, then the regression coefficients must be 

considered random. This methodology has been used 

to model traits that are measured over time, such as 
growth traits. In order to adopt this model, the 

measurements over time are considered to be successive 

points on a continuous trajectory, and hence a prediction 

of parameters is permitted, also for points (ages) where 

measurements have not been done. To describe the fixed 

curve for all the individuals, as well as the individual 

ones, covariance functions (Kirkpatrick et al. 1990) that 

describe the covariance structure between ages can be 

used. In this context, covariance functions using 

Legendre's polynomials have been used because they 

make calculations and interpretations easier. 

Another alternative of analysis for longitudinal 

data is the repeatability model, but it is necessary to 

assume that successive measurements in the same 

individual with the present correlation equal to the unit. 

However, such assumptions are not always valid ones, 

because for growth traits, for example, successive 

measurements are always more strongly correlated than 

those more distant in time. 
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In a multi-trait approach we do not need to make 

assumptions regarding the covariance structure, which 

means that a non structured covariance matrix is used. 

Consequently, this alternative requires the estimation 

of a large number of parameters, and may cause many 

computational difficulties. 

The objective of this paper was to study variance 

components and genetic parameter estimations using 

random regression, repeatability and the multi-trait 

models with longitudinal data with different levels of 

lost information present in the data. 

MATERIAL AND METHODS 

The data was simulated such that it represented 

crossing structures distributed in three different places. 

A progeny test was simulated, by crossing 30 males 

each with three different females, with each crossing 

generating ten different offspring. This crossing 

structure was simulated in three different places. The 

fixed effect of place was created to present non 

significant statistical differences (similar means and 

variances). For each offspring there were phenotypic 

data at five different ages, 12, 30, 48, 66 and 84 months, 

resulting in 120 relatives (30 males and 90 females), 

giving a total of 1,020 individuals, with 900 of them 

presenting information at five different ages, which 

resulted in 4,500 observations of production. 

The simulated longitudinal data can be described by 

the mixed linear model defined as: y= XB + Za + Wp + €, 
where y is the vector of observations from each individual; 

B represents the vector of fixed effect and of the general 

curve parameters for all the individuals; X is the 

incidence matrix of fixed effects levels and the regression 

variables, corresponding to the standardized ages 

associated to the Legendre’s polynomials; a and p are 

the random vectors of random regression solutions of 

the additive genetic effect and of random regression of 

the permanent environmental effects, respectively; Z 

and W are the matrices that associate the standardized 

ages by the Legendre’s Polynomials to the a and p 

vectors, respectively. € is the random temporary 

environmental effect vector. 

Assuming that the vectors y, a, p e e have a 

normal distribution then E(a) = 0, and it’s variance is 

V (a) =A ® Ka = G, where Ka is a covariance matrix 

between the random regression coefficients of the 

additive genetic effect and A is a matrix that indicates 
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the degree of the individuals relationship, of equal 

dimension to the total number of individuals (N). The 

vector p has E(p) = 0 and a variance V(p) = I®Kp = P, 

where Kp is a covariance matrix between random 

regression coefficients of the permanent environmental 

effect and Lis an identity matrix of equal dimensions to 

the number of individuals with information (n). 

Finally, € has the expected value E(g) = 0, and a 

variance of V (€) = Io% = R, where 62 is the temporary 

environmental effect variance. Consequently, y 

has a mean and variance equal to E(Y) = XB and 

V(Y) =ZGZ’ + WPW’ + R, respectively. 

The fixed effects and the general regression curve 

for all the individuals are associated to the b vector. 
The data simulation was carried out by using a second 

degree polynomial model, with Legendre’s orthogonal 

polynomials to describe both the fixed trajectory and 

the random effects of the model. The temporary 

residual effect was assumed to have a normal 

distribution with an average equal to zero and a 

variance of 63 =2.2 unity? and the Ka and Kp covariance 

matrices of random regression coefficients of the 

additive genetic and permanent environmental effect, 

were respectively defined as follows, 

22367 0.5571 -0.1227 

Ka=| 05571 02939 0.0027 |44 

— 0.1227 0.0027 0,0328 

1.4140  0.1405 -0.3454 

Kp=| 0.1405 0.5960 0.1328 

—0.3454 0.1328  0.4869 

The B vector containing the fixed curve was obtained by 
B=(9'¢)" (@', where Y=[15.14 26.82 35.72 41.84 45.1] 
represents the average production at months 12, 30, 48, 

66 and 84, respectively. The ¢ matrix represents the 
multiplication between the standardized ages matrix 
(M) with the one that describes the three first 
Legendre’s polynomials (A), ¢ = MA, resulting in 
B'=(9’ )1 (¢’ 1)’= [47.8832 12.2381 -2.3636], 
which is the vector of solutions for the fixed curve 
for all the individuals in the study representing the 
intercept and the linear and quadratic coefficients of 
the equation, respectively. If UT'2 and UT'Zare the 
Cholesky decomposition of the covariance matrices of 
the random regression coefficients for additive genetic 
and permanent environmental effects, respectively, and 
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A is a numerator relationship matrix between individuals, 

where AT'2, is the Cholesky decomposition of this 

relationship matrix, then the vector y (phenotypes) 

containing the “i”th traits (age) is defined as 

y =B+ ATV2, Za UTY?, +Zp UT'?, +e. 
After the complete data file simulation 450 

individuals with information were randomly chosen, 

which had the production information at 84 months 

deleted giving a second file with a 10% loss of 

information. Subsequently, the same individuals had 

deleted the production information at months 66, 48 and 

30, giving new data files with 20%, 30% and 40% losses 

of information, respectively. The elimination of 

information from individuals using a random process 

aimed at studying the efficiency of the common methods 

used in longitudinal data analysis, when applied to 

incomplete data. Our goal was to study the lost 

observations effects. 

Again, with the complete data file, the individual 

elimination process was made. However in this case, 

the individuals whose information was deleted were the 

ones who had the least phenotypic value and 

represented samples with the selection effect, with the 
objective to study the efficiency of the common 

strategies analysis used in longitudinal data analysis, 

regarding the effect of lost observations by the 

selection effect. 

Production data in each situation were analyzed 
to estimate the (co)variance components and the 

genetic parameters by different methods. Both the 

simulation and manipulation of the data files were 

realized with the Statistical Analysis System version 

8.1 (SAS 1990, SAS Institute Inc.). 

Considering an analysis where each age is like a 

repeated measurement in the same individual, the 

repeatability model is described as y = Xb + Za + Wp + e, 

where y is a n x lvector of n observations (production), 

X is an incidence matrix of local fixed effects and of the 

age (co) variable for each individual’s production, Z 

and W are the incidence matrices of the individual’s 
random additive genetic and permanent environmental 

effects associated to vectors a and p of the additive 

genetic and permanent environmental values, and e is 

the residual vector with the same dimension of y. 

The random regression model used considered 

each age as a point in a continuous trajectory, fitting 

covariance functions both for the additive genetic effect 

and for the permanent environmental one, where both 
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functions used the first three Legendre’s polynomials, 

characterizing a second degree polynomial function. 

This model can be described as y = XB + Za + Wp +¢; 

where y is the vector of n observations of production at 

each age; X is the incidence matrix of local fixed effects 

and the standardized ages between -1 to +1 that 

describes the averaged trajectory of all individuals by 

the Legendre’s polynomials; B is the solutions vector 

of local fixed effects and of the fixed regression of all 

the individuals; Z and W are diagonal block matrices 

with the standardized ages associated to the random 

regression coefficients of the additive genetic and 

permanent environmental random effects for each 

individual, respectively; a and p are random regression 

model vectors of additive genetic and permanent 

environmental effects, respectively, for each individual. 

The vector e represents the random temporary 

environmental effects. 
In the multiple trait analysis each age was 

considered a distinct characteristic. The model used is 

described as y = XB + Za + e, where : 

te s q,._li.. ANA 

X ’x{o x,]'ª— [ '4» z,]’ 

yi is the response variable vector; X; is the incidence 

‘matrix of the local fixed effects; B is the local fixed effects 

levels solutions; Z is an incidence matrix of random 

effects; a and e are the additive genetic and residual 

random effect vectors, respectively, at the i’th age. 

E[y] = XBand V[y] = ZGZ’+R where G = A®G, is 

the genetic additive variance and covariance matrix and 

R = I®R, where R, is the residual variance and 

covariance matrix. 

To compare the results from different data files 

with different strategies of analysis, genetic parameters 

and variances estimates were evaluated. In some cases 

the likelihood ratio test was used (Rao 1973). 

The analyses were all processed with the software 

DFREML Version 3.0 (Meyer 1998). 

RESULTS AND DISCUSSION 

With the repeatability model analysis and random 

loss of information, the heritability estimates were similar 
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between the different ages (Table 1). However, when 

the loss of information occurred by selection, there 

was a reduction in the additive genetic variance, 

according to the loss of information level. 

The additive genetic variance estimates at each 

age, for the complete data file with loss of information, 

with and without selection, by using random 

regression models are presented in Table 2. 

The loss of information obtained with the 
random process did not modify the heritability 

estimates at any loss of information level (Table 3). 

According to Dal Zotto (2000), in random regression 

models the minimum number of observations to be 

considered for each permanent environmental effect 
level must be equal to the number of parameters used 

to describe the data trajectory plus one. According 

to Schaeffer and Dekkers (1994), random regression 

models can also be used when individuals have only 

one piece of information. Results obtained in this 

study are in agreement with these authors. 

When the loss of information was made by 

eliminating the individuals with the least phenotypic 

values, the genetic and environmental variance 

estimates reduced, causing smaller values for the 

heritability estimates. With selection, only the random 

regression heritability estimates with a 10% loss of 

information were similar to the complete data file 

analysis estimates. Resende et al. (2001), using 

random regression models to describe the diameter 

at breast height within one to seven year old 

Eucalyptus urophylla trees, found that the 
heritability estimates were very similar to that 

obtained by single-trait models before three years 

old. For advanced ages the estimates were smaller. 

The authors discussed that single-trait analysis 

overestimated the parameter estimates because of the 

phenotypic variance reduction, due to the least 
vigorous individual death, became naturally selected 

for population adaptation. Matheson and Raymond 

(1984), cited by Resende et al. (2001), found 

heritability estimates in two Pinus radiata 

populations equal to 0.12 and 0.24. The estimates 

assumed values of 0.21 and 0.33 after the worst plants 

were eliminated, respectively. These results were 

opposite to those obtained in this study, probably 

due to the sample size, since our data was simulated 

considering a progeny test with only two 

generations; the ancestry and the offspring. 
Therefore, the elimination of information from smaller 
phenotypic values and consequently the elimination 
of the smaller genotypic values changed the data 
structure. 

Table 1. Additive genetic variance, permanent environmental variance, temporary environmental variance, environmental variance, 
and heritability estimates, by using the repeatability model, with and without selection 

Loss of information without selection (%) Loss of information with selection (%) 

Estimates 0 10 20 30 40 10 20 30 40 

62 1225 1101 0.994 0.969. 0979 0970 0.694 0464 0299 

õ 0217 0271 0285 0280 0311 0215 0.121 0058 — 0012 

&1 3.666 3358 3401 3398 3481 3.368 3357 3325 33718 

G3+61 3.883 3629 3.686 3678 3792 3583 3478 3383 3391 

h? 024 023 021 021 021 021 0.17 0.12 008 

Table 2. Estimates of additive genetic variance in each age for the complete and incomplete data file, with and without selection, by 
using random regression models 

Age Data Loss of information without selection (%) Loss of information with selection (%) 

(Months) Complete 10 20 30 40 10 20 30 40 

P 0613 0.606 0613 0.569 0530 059 0599 0667 — 0580 

30 0.683 0719 0719 — 0897 0901 0734 0789 0695 0313 

48 1010 1.080 1.044 1196 1.320 1.028 0785 0480 — 0149 

6 1793 1920 1818 1845 1933 16838 — 0693 0300 0176 
sa 3.304 3.549 3.359 3.031 3.030 2987 0784 1015 0932 
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Table 3. Estimates of heritability in each age for the complete and incomplete data file, with and without selection, by using random 

regression model 
Age Complete Loss of information without selection (%) Loss of information with selection (%) 

(Months) Data 10 20 30 40 10 20 30 40 

2 0.16 0.15 0.15 0.15 0.14 0.15 0.15 017 0.15 

30 0.18 0.18 018 021 023 0.19 0.19 0.19 009 

48 022 023 022 025 028 022 0.18 0.13 004 

[ 035 038 036 037 039 035 021 011 00% 

s4 041 046 044 040 041 043 0.16 020 0.19 

The complete data files were analyzed by two 

random regression models, where the difference between 

them was in the temporary environmental effect 

variance. In the first model the variances were constant 

and in the second model each age had a different 

variance. Comparing the estimates of variance 

components and heritability, and also comparing the 

models likely function values (Table 4), its acceptance 

at a 5% significance level indicates that the temporary 

environmental variances being homogeneous or 

heterogeneous did not influence the model fit. 

In the data analysis considering each age as a trait 

by multi-trait models analyzing traits side by side (bi- 

trait model) the same results were observed. The 

heritability estimates for the complete and incomplete 

data files with and without selection are presented in 

Table 5. These values represent the minimum and 

maximum estimates obtained by the analysis of traits side 

by side. The selection caused a variability reduction since 

the loss of information increased, in other words this 

model was very sensitive to the selection effect. However, 

all the heritability estimates were similar when the loss of 

information was not made by a selective process. 

Generally, independent from the analysis strategy 

used (single-trait, multi-trait or random regression 

models) the selection effect caused the least 

discrimination among individuals and reduced the 

variability between them. The genetic variance was 

reduced as a result of less variability between 

individuals and consequently smaller heritability 

estimates. With a 10% loss of information the heritability 

values did not change, with a 20% loss the heritability 

values reduced at the last two ages, with a 30% loss the 

reduction in heritability values occurred at the three 

last ages and with a 40% loss the reduction occurred at 

the four last ages. However with a 10% loss of 

information with selection the random regression model 

analysis was the best alternative. 

Knowing that the loss of information could change 

the temporary environmental effects, the data was also 

analyzed with a 40% loss of information with selection, 

but assuming heterogeneous variance for the temporary 

environmental effect at each age. Moreover the complete 

data file was also analyzed to check the permanent 

environmental effect of variance homogeneity effects. 

Comparing the variance components and heritability 

estimates and comparing the models using the likelihood 

function values (Table 6) it was observed that the 

variance heterogeneity for both the complete and the 

select data file did not change the data variation 

description. Therefore the loss of information did not 

change the temporary environmental effect. 

Table 4. Additive genetic variance (%), permanent environment (02), and temporary environment (02), and heritability (h?) estimates, 
in cach age by random regression models with different assumptions, likelihood functions and likelihood ratio tests (2º) values 

Homogeneous residual Heterogeneous residual 

Ages o o o W o o o? ( 

2 0623 1236 2067 0.16 0586 1263 2043 0.15 

30 0705 1.048 2067 0.18 0707 1031 2084 018 

48 1.089 1537 2067 023 1116 1532 2113 023 

@ 1811 1223 2067 035 1876 1.198 1918 038 

84 2916 2.864 2067 0.37 3.083 2523 2389 039 

2Log(L) 1062423 10621.64 
122.59 ( P > 0.05) 
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Table 5. Heritability estimates using the complete and incomplete data file considering or not the selection by the multi-trait model in 
the uni-trait analysis 

Loss of information without selection (%) 

Ages Complete 10 % 20% 30% 40% 

2 0.12-0.14 0.13-0.14 0.13-0.14 0.11-0.13 0.12-0.13 
30 020-021 020-0.25 020-025 020-025 027-029 
48 0.19-0.23 0.19-0.23 0.19-023 0.20-0.26 023-0.26 
%6 0.39-0.42 0.33-0.40 0.38-0.42 0.38-0.42 0.38-0.40 

8 0.37-0.40 0.32-043 0.38-0.41 0.38-041 0.38-0.40 

Loss of information with selection (%) 

Ages Complete 10 % 20% 30% 40 % 

2 0.12-0.14 0.13-0.14 0.13-0.15 0.13 0.13 

30 020-0.21 020-0.25 0.19-0.20 020-0.25 0.12-0.14 

48 0.19-0.23 0.19-0.23 0.19-0.22 0.05-0.07 0.05-0.06 
“ 0.39-0.42 0.40-0.42 0.03-0.11 0.03-0.07 0.03-0.06 
8 0.37-0.40 0.11-0.23 0.11-0.18 0.15-0.19 0.16-0.18 

Table 6. Additive genetic (62), permanent environment (&}), temporary environment (§?) variances, heritability (j?) estimates, 
likelihood function logarithm and likelihood ratio test (%) values fo 
random regression models 

r the complete and selected data with a 40% loss of information in 

Complete data Homogeneous residual Heterogeneous residual 

Ages &2 LS G2 b si 5 ? hê 
2 0613 1252 2062 0.16 0618 1261 2044 0.16 

30 0683 1079 2062 018 0702 1049 2090 0.18 
43 1010 1598 2062 022 1044 1561 2154 022 

@ 1793 1228 2062 035 1825 1187 1.890 037 

s4 3.304 2630 2.062 041 32771 2337 2480 040 

-2Log(L) 10624.22 10621.64 

% 258 (P>005) 

Selection data 

Ages * &2 G h2 õ 8; ? h? 
2 0580 1383 1984 0.15 0565 1.509 1.838 0.14 

30 0313 1.009 1984 009 0298 0993 2230 008 

48 0.149 1214 1.984 0.04 0.141 1215 1.963 004 

@ 0.176 0545 1984 006 0.184 0517 1693 007 

s4 0932 1.906 1.984 0.19 0920 1495 2588 0.18 

“2Log(L) 597928 597094 
%X 834(P>005) 

The heritability estimates arising from random 

regression models when using complete or incomplete 

data files with and without selection were similar to the 
multi-trait models analysis estimates. However the 

heritability estimates obtained with the multi-trait model 
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were more affected by the loss of information data than 
those obtained by random regression models. With a 
10% loss of information the heritability estimates 
obtained by the random regression model were similar 
to those obtained with the complete data file. However 
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the multi-trait model at the same loss of information 

level presented underestimated values at the last age 

studied. Therefore as the random regression models had 

used covariance functions that give a continuous 

covariance structure of random effects associated to 

the analyzed character description, it can be affirmed 

that they can better express the mixed linear model’s 

random effects variance that describe longitudinal data. 

By considering that the trait in study can change in 

time, this strategy is more realistic than the repeatability 

model, and because it uses fewer parameters it becomes 

more attractive than the multi-trait models that can be 

prohibited in practical applications with a large number 

of parameters. 

Schaeffer and Wilton (1998) discussed that in some 

cases when all the traits are observed in each individual 

and the traits heritability are similar and all of them are 

positively correlated, the model analysis that considers 

multiple traits would not offer a sign 

the genetic evaluation accuracy. 

ant increase in 

CONCLUSIONS 

When the assumption is that the correlation 

between successive measurements in a single individual 

is equal to one which is invalid, then random regression 

models in the genetic analysis can provide better results 

than repeatability models. 

Random regression models yield covariance and 

genetic parameter estimates similar to those obtained 

by multiple-trait models, however, with the use of fewer 

parameters in the model, which in practice is an 

advantage. 

In small population samples submitted to the 

selection effect, multi-trait models were more 

susceptible to the selection bias than the random 

regression models analysis, but additional studies are 

necessary for more conclusive findings. 

Considering the continuous nature of the 

dependent variable, random regression models must be 

preferred to single trait models in high loss of 

information level data files. 

Estimação de componentes de variancia com dados 

longitudinais: um estudo de simulação com métodos 

alternativos 

RESUMO - Foi gerada uma estrutura de pedigree, considerando-se trés locais diferentes. Para cada prole foram geradas 
informações fenotipicas em cinco idades diferentes (aos 12, 30, 48, 66 e 84 meses). O arquivo de dados foi gerado permitindo 
que algumas informagaes fossem perdidas (10, 20, 30 e 40%) por um processo aleatério e por aqueles individuos com menor 
valor fenotipico, representando o efeito da seleção. Foram utilizados Modelos de repetibilidade, de regressao aleatdria e 
multi-caracteristica. Modelos de regressao aleatdria foram mais adequados para descrever continuamente as estruturas de 

covaridncias de crescimento ao longo do tempo, do que modelos de repetibilidade, quando a pressuposição de que a 
correlagdo entre mensuragoes sucessivas no mesmo individuo é diferente da unidade. Sob auséncia de selegao, os modelos de 

regressao aleatória e multi-caracteristica foram semelhantes. Entretanto, sob o efeito da seleção, o modelo multi-caracteristica 

mostrou-se mais susceptivel ao viés de seleção. 

Palavras-chave: Modelo de regressio aleatéria, modelo multi-caracterfstica, modelos de repetibilidade, seleção. 
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