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Abstract: We present an R-based function for defining TPE as GIS-polygons, 
intended for use in enviromics studies. It offers customizable parameters, such 
as pixel size, buffer boundaries, and concavity, providing enhanced flexibility 
for G×E analysis. This tool optimizes genotypic, envirotypic, and spatial assess-
ments, serving as a powerful resource for breeding research.
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INTRODUCTION

The concept of the target population of environments (TPE) has evolved 
significantly since its initial definition as the set of environments where 
genotypes are recommended based on performance in representative 
test environments (Comstock 1977, Allen et al. 1978). Chenu et al. (2011) 
stressed the importance of TPE in addressing genotype-by-environment 
(G×E) interactions, particularly in the context of water-deficit variability. 
Chapman et al. (2012) further broadened its scope by incorporating biotic 
and abiotic stresses, thus highlighting its role in improving crop adaptation 
to climate change. With advances in breeding technologies, Voss-Fels et 
al. (2018) integrated TPE into genomic selection, stressing the need for 
accurate environmental characterization. Crespo-Herrera et al. (2021) 
included socioeconomic factors in TPE considerations, while Cooper and 
Messina (2021) explored its application in multi-environment trials to 
improve management strategies and genotype predictions. Resende et al. 
(2021) applied TPE to enviromic-assisted selection. They used GIS tools for 
a detailed dissection of G×E interactions.

The concepts of TPE, mega-environments, and breeding zones are often 
conflated, yet they represent different scales of genotype adaptation. Mega-
environments are broad regions characterized by relatively homogeneous 
environmental conditions, typically identified through environmental data 
analyses (Gauch and Zobel 1997, Gupta et al. 2013, Yan et al. 2022). In contrast, 
breeding zones are smaller sub-regions within mega-environments or TPEs, 
defined by specific environmental traits to reduce G×E interactions (Resende 
et al. 2021, Callister et al. 2024, Resende et al. 2024a). The integration of big 
data and advanced technologies has significantly improved the efficiency of 
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breeding programs by enabling the precise targeting of cultivars to specific environments, thereby increasing genetic 
gains (Costa-Neto and Fritsche-Neto 2021, Xu et al. 2022).

Clipping the TPE within a GIS framework involves integrating spatial data with environmental factors such as climate 
and soil characteristics, both of which have a significant impact on crop performance (Resende et al. 2024a). GIS tools 
play a critical role in mapping these factors and accounting for geographic variability. The complexity increases when this 
spatial data is combined with trials conducted in different environments to improve genotype performance and account for 
genotype-environment-management (G×E×M) interactions (Cooper and Messina 2021). The TPE may include continuous 
or discontinuous regions where environmental factors have unique effects on genotypes. Tools such as surrounding 
polygons derived from multi-environment trials using concave or convex hulls (Gombin et al. 2020) are instrumental 
in delineating the TPE. However, Olivoto and Lucio (2020) emphasize the challenges of conducting a comprehensive 
multi-environment trial (MET) analysis. These challenges could be mitigated through a GIS-based computational tool 
integrating phenotypic and geospatial data.

This approach streamlines the identification of environmental patterns within target areas, thereby ensuring that TPE 
accurately reflects real-world crop conditions (Resende et al. 2024b). The use of GIS makes it possible to cross-reference 
climatic, edaphic, and management data (Pebesma and Bivand 2023), providing an integrated perspective on genotype 
performance. The integration of GIS has been particularly effective in enviromics, where satellite and remote sensing 
data provide deeper insights into G×E interactions, enhancing strategies for crop improvement (Resende et al. 2024a). 
This paper introduces the R function ‘TPEmap’, designed to define precise TPEs by incorporating buffers and concavity 
adjustments. We demonstrate its application using a common bean dataset from the Brazilian Agricultural Research 
Corporation (Embrapa) Arroz & Feijão Breeding Program, as detailed by Heinemann et al. (2022).

METHODS

Herein we describe a function called ‘TPEmap’, designed to define geographic TPE polygons. This function delineates 
the entire area where experimental or on-farm trial data points serve as reference locations. The underlying premise is 
that any location where a crop is being bred, tested, or cultivated forms part of the target environment, while surrounding 
areas are included to account for environmental variability.

Geospatial data processing and analysis
Geospatial data processing began by loading the geographic coordinates of the MET and on-farm trial points. These 

shapefiles were processed using the ‘sf’ library in R (Pebesma and Bivand 2023). To ensure spatial compatibility with 
other datasets, the coordinates were transformed into the WGS 84 coordinate reference system (CRS; EPSG:4326). To 
facilitate the testing of different scenarios, we developed a ‘generate_coordinates’ function. This function allows for 
the simulation of any number of points within a specified area. While Brazil was used as the reference area in this study, 
the function can be applied to any location worldwide.

After processing and preparing the geospatial data, the next step was to apply buffers to the geographic coordinates 
(as shown in the Trial Buffers in Figure 1). These buffers represent phenotypic data collection points, such as breeding 
experiments or on-farm trial locations. By using the ‘st_buffer’ function from the ‘sf’ package, buffers were created at 
adjustable scales, measured in kilometers, around each data point. These individual buffer polygons were then merged 
using the ‘st_union’ function to form a single aggregated area of influence.

Building the TPE polygon using a concavity algorithm
The TPE polygon was constructed by using the ‘concaveman’ algorithm in R (Gombin et al. 2020), which generates 

a concave polygon adaptable to the geospatial points of interest. Following the creation of buffers around the trial 
points, these polygons were merged and converted into a set of points, forming the foundation for the concave polygon. 
The ‘TPEmap’ function provides flexibility for users by allowing adjustments to parameters such as buffer distance, 
concavity, and length threshold, enabling customization of the polygon to meet the specific needs of a study. The 
‘generate_coordinates’ and ‘TPEmap’ functions, along with detailed instructions on how to use them, are available on 
GitHub [https://github.com/Enviromics/TPE-mapping].
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An optional buffer can be applied during TPE polygon generation, allowing the user to expand the final area to include 
all desired influence zones. The ‘st_simplify’ function can be used to smooth out irregularities and small protrusions 
to improve the usability of the polygon, with the smoothing tolerance adjustable to the user’s preference. Breeders 
may choose to define an external TPE without incorporating phenotypic trial data, with the goal of obtaining predictive 
results. However, such an approach cannot be validated by using appropriate cross-validation schemes (Resende et al. 
2024b). An alternative validation strategy involves planting in the target region in the next cycle or season to confirm 
the model’s predictions. For example, if data points from previous trials define the region, the model can be trained and 
validated using data from the same region (see Rogers and Holland 2022 for possible validation schemes). If the goal is 
to predict outcomes for a different region, such as another country, similar TPEs may be identified, but the predictions 
cannot be validated without new trials. This would necessitate additional cycles to generate and confirm the required 
validation data.

The final polygon is converted into a raster format, with the pixel size determined based on the specifications of the 
G×E study. The resulting file (‘raster_base.tif’) is prepared for use in Enviromics analyses, allowing for the integration 
of environmental data with the geographical locations of the trials. This ensures that the TPE accurately represents the 
environmental conditions of the regions of interest. For examples of potential enviromics results achievable using the 
base raster, refer to Resende et al. (2024a). Increase in pixel resolution (i.e., decrease in pixel granularity) can enhance 
spatial detail. However, this comes at the cost of a quadratic increase in the total number of pixels within the TPE, which 
requires more physical computational memory.

Figure 1. Geographical information system (GIS) flowchart for target population of environments (TPE) construction by using the 
‘TPEmap’ function. The process includes: 1) loading and transformation of geospatial data; 2) definition of user-defined parameters 
(e.g., buffers, concavity, and smoothing); 3) creation of TPE polygon; and 4) rasterization. The output is the ‘raster_base.tif’ file, 
which serves as a foundational layer for enviromics analyses. This file integrates data from multi-environmental trials (MET) or on-
farm trials with environmental information.
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THE ‘TPEMAP’ FUNCTION ARGUMENTS

The ‘TPEmap’ function was developed to facilitate the creation of a TPE for plant breeding, leveraging geospatial data 
from MET or on-farm trials. This function includes several user-defined parameters (Figure 1, “User-Defined Parameters”). 
Key arguments, detailed below, include adjustments for buffers, polygon concavity, and pixel size for rasterization:

• ‘coordinates’: A data frame containing the geographic coordinates of MET or on-farm trial points. The data 
frame must include two columns, x (longitude) and y (latitude), representing the location of each trial point.

• ‘point_buffer’: A numeric value specifying the buffer distance (in kilometers) to be applied around each point. 
This argument allows the user to adjust the TPE to include nearby regions of interest.

• ‘concavity’: A numeric value that controls the degree of polygon concavity. Lower values create a more detailed 
polygon, while higher values (approaching infinity) result in a convex hull.

• ‘length_threshold’: A numeric value that sets the edge length threshold in the concavity algorithm. Edge segments 
shorter than this threshold are excluded from the polygon’s extra detail. This parameter helps balance the level 
of detail with computational efficiency.

• ‘expansion_buffer’: A numeric value defining an additional buffer distance (in kilometers) applied after generating 
the initial concave polygon, expanding the final TPE.

• ‘simplify_tolerance’: A numeric value that sets the tolerance level for simplifying the final polygon. This parameter 
allows users to smooth the polygon by removing excessive detail and minor irregularities.

• ‘pixel_size’: A numeric value that specifies the pixel size for rasterizing the TPE. This parameter is crucial during 
the conversion of the final polygon into a raster format.

FEATURES OF THE ‘TPEMAP’ FUNCTION

To demonstrate the functionality of the ‘TPEmap’ function with a realistic example, we adapted the ‘generate_
coordinates’ function to simulate geographic coordinates for 100 points. These points represent locations such as 
experiments or plantings, ensuring their suitability for soybean cultivation (Silva et al. 2021). Protected and natural reserve 
areas were excluded from the simulations to ensure compliance with environmental regulations. Figure 2 showcases 
various configurations possible with ‘TPEmap’. Users can customize key parameters, including 1) buffer sizes, 2) concavity 
(concave hull), 3) length threshold (‘length_threshold’), and 4) simplification tolerance (‘simplify’).

Concavity and length threshold parameters are crucial for fine-tuning the TPE clipping process, allowing users to 
create polygons with varying levels of detail. These parameters enable the generation of polygons ranging from highly 
detailed, intricate shapes (e.g., Figure 2A and 2C) to simpler, more generalized, and convex shapes (e.g., Figure 2D). 
The ‘TPEmap’ function also facilitates the visualization of different configurations by enabling adjustments to concavity 
values, such as varying it from 1 to 5. For cases requiring a convex hull, the concavity can be set to very high values (e.g., 
1e5 in this context), providing a straightforward way to encapsulate all trial points within a broad, enclosing polygon.

APPLICATION TO COMMON BEAN MET DATA SET

The success of breeding strategies relies heavily on accurate environmental characterization and the alignment of 
MET data with the environments within the TPE (Cooper et al. 2023). In defining the TPE for common bean (Phaseolus 
vulgaris L.), we utilized MET coordinates from Embrapa Arroz & Feijão, encompassing three distinct crop season types: 
Rainfed (Figure 3A), Dryland (Figure 3B), and Winter (Figure 3C) (Heinemann et al. 2022).

This dataset includes 423 trials conducted across 71 unique geographic locations from 2011 to 2023. Depending on 
the regionalization of production areas, trials covered up to three different crop seasons (Figure 3D). Specifically, 26 trials 
were conducted in the Rainfed season; 12 in rotations of Dryland and Rainfed; 9 in Rainfed and Winter; 9 exclusively in 
Winter; 7 exclusively in Dryland; 5 in Dryland and Winter; and 3 locations encompassed all three seasons. Trials included 
87 commercial cultivars, with 52 classified as “Carioca” type and 35 as “Preto” type.
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Figure 3E demonstrates the process of generating the surrounding polygons (concave hull) for the TPE using a concavity 
value of 2 and a ‘length_threshold’ of 10. Trial buffers (‘point_buffer’) of 100 km were applied around each data point. 
An additional 100 km buffer was then added to the TPE polygon for a total expansion of 200 km. The final polygon was 
then smoothed with a simplification tolerance of 50 km to create a more refined shape. This methodology is essential 
for identifying and mapping representative production areas that consider the different environmental conditions that 
common beans face in Brazil due to the country’s bioclimatic diversity (Elias et al. 2021).

The success of a breeding program often hinges on achieving a balance between broad adaptation and targeted 
regional adaptation (Piepho and Möhring 2005). The different responses of common beans to climatic conditions during 
different growing seasons must be accounted for to ensure that the TPE reflects actual growing conditions in Brazil 
(Heinemann et al. 2022). The results reveal a wide distribution of experimental points across Brazil, encompassing 
diverse climatic zones and soil types. Using the ‘TPEmap’ function, we constructed a TPE polygon that integrates data 
from all three crop seasons, offering a comprehensive representation of common bean cultivation areas. The overlay 
of trials (Figure 3D) shows that incorporating data from multiple seasons is a practical approach to defining TPE that 
captures broad environmental variability. However, TPEs can be designed with different focuses: 1) broad, spanning 
multiple seasons; 2) season-specific, tailored to individual growing seasons; or 3) based on other stratification strategies 
used by breeding programs.

Considering modern envirotyping techniques, as described by Xu et al. (2022) and Resende et al. (2024a), the rasterized 
base with refined pixels can be used to extract environmental covariates essential for Enviromics studies and G×E 
interaction analyses at various spatial scales (Resende et al. 2021). Envirotyping data can be sourced from platforms such 
as WorldClim, Planet, NASAPower, ERA5, SRTM, MODIS, and SoilGrids (for details, see Resende et al. 2024a). Additionally, 
the ‘EnvRtype’ package facilitates access to NASAPower data (Costa-Neto et al. 2021). The resolution of the raster base 
(‘raster_base’) must match the resolution of the data sources, as the base may have a high level of refinement, while 
some platforms provide coarser pixel resolutions. For example, when the TPE was converted to a raster base (Figure 
3F), a pixel size of 0.1° (~11.1 km) was used, resulting in 33,465 pixels within the TPE. However, refining the pixel size 
to 0.01° dramatically increases the number of pixels to 3,347,285, which presents significant computational challenges 
when downloading and processing environmental data.

Figure 2. Definition of the target population of environments (TPE) polygon using different concavity and buffer parameters. (A) TPE 
polygon generated with a concavity of ~1, a trial buffer of 100 km, a TPE buffer of 100 km, and a simplification tolerance of 50 km. 
This configuration includes 100 geographic points, 26 of which are breeding experiments (shown in red). (B) TPE polygon with a con-
cavity of ~1, a trial buffer of 100 km, a TPE buffer of 10 km, and a simplification tolerance of 100 km. (C) TPE polygon generated with 
a concavity of ~1, a trial buffer of 100 km, a TPE buffer of 100 km, but with a concavity adjusted to 5. (D) TPE polygon produced as a 
convex hull (concavity ~∞), using a trial buffer of 100 km and a TPE buffer of 100 km. These configurations demonstrate how changes 
in concavity and buffer parameters affect the shape and fit of the polygon, highlighting areas of interest for enviromics analysis. 
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Detailed characterization of environmental types within the TPE is critical for directing breeding programs 
toward specific targets for adaptation to environmental stresses (Cooper et al. 2023). Results from Resende et al. 
(2024a) highlight the importance of environmental variables such as soil properties, radiation, and temperature in 
predicting genotypic performance. The resolution of pixels used to define the TPE plays a pivotal role in the quality 
of its representation. Smaller pixels provide greater spatial detail but achieving a balance between precision and 
computational efficiency is essential (Piepho 2022). This study highlights the importance of using GIS tools for the 
precise definition of TPEs. Such tools enable breeders to account for geographic variation and optimize G×E interaction 
analyses in envirotyping studies. By doing so, they enhance the adaptation and performance of crop varieties across 
diverse environmental conditions.

FINAL REMARKS

This article introduces a practical methodology for defining TPE using GIS-based tools and the ‘TPEmap’ R function. 
By incorporating spatial data, particularly the geographic coordinates of phenotypic data sources such as breeding trials 
and on-farm data, the method allows for the precise delimitation of TPE polygons. The core principle underlying this 
approach is that areas hosting breeding trials or planting sites, along with their surrounding regions, hold direct relevance 
for breeders. By focusing on these areas, this methodology optimizes breeding program efficiency, specifically targeting 
G×E interactions to achieve breeding goals. Through customizable parameters, including buffer distances, concavity, 
and other spatial adjustments, the ‘TPEmap’ adapts models to meet the specific needs of trials. This was effectively 
demonstrated using Embrapa’s common bean dataset. The tool improves the accuracy of mapping, facilitates informed 
decision-making in breeding programs, and generates raster to facilitate future data integration.

The future of TPE mapping has significant potential, including expanding its application to regions beyond the Americas 
and incorporating additional land-use data, such as agricultural areas outside protected zones and urban regions, with 
the ability to update in real time. Developing methods to subdivide TPEs into sub-TPEs, or breeding zones, could enhance 

Figure 3. Definition of the target population of environments (TPE) for common beans across different trial types (seasons). (A) 
TPE polygon generated for rainfed season trials, applying the specified trial buffer. (B) TPE polygon generated for dryland season 
trials. (C) TPE polygon generated for winter season trials. (D) Final TPE polygon integrating all common bean trials across the three 
seasons. Different colors indicate the distribution of trials by season: dryland, rainfed, and winter. (E) Visualization of the combined 
trial buffers, representing all three seasons, along with the resulting TPE polygon. The buffer distances applied around trial points are 
highlighted. (F) Rasterized TPE base created with a pixel size of 0.1° (~11.1 km). The total number of pixels and the pixels contained 
within the TPE are displayed.
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precision in targeting specific breeding goals. Current efforts aim to refine tools for determining the optimal pixel size 
and to enable efficient large-scale downloads of envirotypic data. Applying this methodology across a variety of crops 
and breeding programs will help validate its robustness and adaptability in diverse agricultural systems. Extending the 
accessibility of ‘TPEmap’ to Python, in addition to the existing R implementation, could broaden its adoption among 
breeders and researchers.
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