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Abstract: Wheat is the main food crop in the Yellow River Basin of Northwest 
China. To explore the genetic mechanisms of wheat yield traits and identify re-
lated candidate genes, 250 varieties were studied. Genotyping was performed 
with the wheat 90K SNP chip, and genome-wide association analysis was carried 
out through multiple models. A total of 335 SNPs were significantly associated 
with yield-related traits, and 75 markers were simultaneously detected in at 
least 2 models. Of the 73 candidate genes screened, 4 had been reported in 
previous studies, and 69 were new. Among the significantly associated loci, 53 
loci were significantly associated with multiple wheat traits, and a 5A_B1_Hap2 
dominant haplotype was identified that can simultaneously regulate spikelet 
number, spikelet weight, thousand-grain weight, and effective tiller. This study 
provides effective loci for molecular marker-assisted selection breeding of wheat 
and cloning of yield-related trait genes.
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INTRODUCTION

Wheat (Triticum aestivum L.) is an important food crop in China, with 
approximately 17% of the world’s wheat production over the past few years 
(https://www.fao.org/faostat/zh/#compare). With the adjustment of planting 
structure, the wheat planting area in northwest China, especially in the upper 
region of the Yellow River, has recently had a downward trend (Sinclair and Bai 
1997, Li et al. 2019). The wheat industry in the upper reaches of the Yellow 
River should be revitalized by breeding new varieties. To achieve high yields, 
continuous improvement of wheat varieties is the main goal of wheat breeding 
(Kuzay et al. 2019). Wheat yield is influenced by multiple traits, such as effective 
tiller number per plant (ETN), kernel number per spike (KNS), kernel weight per 
spike (KWS), and thousand-grain weight (TKW). Its stability depends on adaptive 
factors like winter-spring characteristics (WS) and growth stage. Thus, analyzing 
yield-related agronomic traits and understanding the genetic structure of wheat 
are crucial for future wheat breeding programs (Pang et al. 2020, Alonso et al. 
2021, Franco et al. 2022).

Recent advances in DNA sequencing technology, SNP detection, genotyping, 
and assembling genomes can be conducted in a high-throughput and cost-effective 
manner, which have greatly facilitated understanding of large crop genomes, 
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especially of wheat, including Triticum urartu, wild emmer, durum wheat, and multiple varieties of hexaploid wheat (Xiao 
et al. 2022). Led by the International Wheat Genome Sequencing Consortium (IWGSC), scientists completed the world’s 
first complete genome map of the hexaploid wheat “Chinese Spring” in 13 years (IWGSC 2018). With the continuous 
improvement of reference genomes, mapping technologies, such as genotyping and SNP array analysis, genome-wide 
association studies (GWAS), and linkage analysis continue to make breakthroughs (Li et al. 2019,  Xiao et al. 2022) These 
advancements have facilitated the cloning of important wheat trait genes. Although about 150 functional markers have 
been developed, they still cannot meet the requirements of high-throughput genotyping and molecular identification 
(Rasheed et al. 2016, Scherlosky et al. 2018). GWAS serve as a foundation experiment in gene mapping of wheat, are 
an excellent tool to link trait analysis to its underlying genetics (Korte and Farlow 2013), and have played a pivotal role 
in the related research of wheat functional genomics in recent years (Li et al. 2019, Xiao et al. 2022).

Natural wheat varieties in populations show rich genetic diversity, which facilitates finding genes linked to yield and 
adaptability. Using multiple models can reduce false results in gene localization. This study conducted GWAS on 250 
natural wheat germplasms with a 90K breeding chip. The objectives were to find loci related to yield traits and predict 
candidate genes. Detecting key SNP loci for yield could help boost wheat yield in the Yellow River Basin and clarify the 
molecular basis of yield formation.

MATERIAL AND METHODS

Plant materials and phenotyping
A total of 250 varieties consisting of wheat breeding accessions and foreign introduced accessions were used as test 

materials (Table S1). All materials were planted in Yongning County, Yinchuan City, China, from 2019 to 2020. Winter 
wheat was sown in October and harvested in June the following year. Spring wheat was planted in February and harvested 
in July. A random block design was adopted, with two rows, two repetitions, a length of 1 m, a row spacing of 20 cm, 
and 135 plants per row. Field management was carried out according to local conventional methods. Ten individual 
plants of each material were randomly selected to investigate their plant height (PLH), kernel number per spike (KNS), 
tiller number per plant (TIN), and effective tiller number per plant (ETN). Once dried naturally after threshing, thousand 
kernel weight (TKW) and kernel weight per spike (KWS) were measured. The wheat growing time (WGT) was calculated 
by subtracting the sowing date from the maturity date. The tested materials were divided into winter or spring (WS) 
types of wheat based on their vernalization requirement. 

Genotyping
The DNA of seeds was extracted using the CTAB method (Wei et al. 2021). The DNA quality was assessed by 1.2% 

agarose gel electrophoresis. The DNA concentration was measured with a NanoDrop™ND-2000 spectrophotometer 
(Wang et al. 2014), and 250 wheat materials were scanned using the KPS Wheat 90K genotyping chip at the Beijing 
Compson Biotechnology Co. Beijing, China. Affymetrix Power Tools were used for the original SNP typing of the samples. 
Markers were a filtration deletion rate of more than 10% and a minimum allele frequency of less than 5%. High-quality 
SNP markers were retained for subsequent analysis.

Population structure and estimation of linkage disequilibrium
The principal component analysis and Neighbor-joining evolutionary tree were estimated for the population structure 

through GCTA v1.94 (Yang et al. 2011), and finally plotted through the Matplotlib package for Python. The squared 
correlation coefficient between loci (r2) was used as a parameter to measure the linkage disequilibrium between two 
polymorphic loci of populations, and r2 was mainly calculated using Pop LD decay v3.41 (Zhang et al. 2019).

Genome-wide association analysis and haplotype block analysis
The GWAS was carried out by the GAPIT package in the R software (Lipka et al. 2012). To minimize false positives, a 

mixed linear (MLM) (Yu et al. 2006), the FarmCPU (Liu et al. 2016), CMLM (Zhang et al. 2010), and BLINK (Huang et al. 
2019) models were employed. Because LD (Linkage disequilibrium) was extensive in this population, assuming that all 
tested markers were statistically independent and deriving a Bonferroni-corrected significance threshold would have 
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been too conservative. Therefore, we estimated the effective number of independent markers (Me) (Li et al. 2012) and 
derived a less-conservative threshold following 0.05/Me (1.0 × 10−4 equivalent to −log10(P) = 4). The SNPs were visualized 
using a Manhattan map and quantile–quantile (QQ) map in R (v4.0.4). Haplotype analyses of the significant SNPs were 
performed to delineate the candidate region utilizing Haploview software (Barrett et al. 2005).

Candidate gene identification
Candidate genes were identified according to their physical positions and functions based on the IWGSC RefSeq v1.0 

(http: //www.wheatgenome.org/), and the significant SNPs were annotated to the corresponding genes using ANNOVAR 
(Wang et al. 2010). GO enrichment was conducted to classify the function of candidate genes.

RESULTS AND DISCUSSION

Phenotypic data analysis
The descriptive statistics for the seven yield traits (WGT, PLH, TIN, ETN, KNS, TKW, and KWS) were listed in Table S2. 

Wide phenotypic differences were observed across all traits, with the coefficient of variation ranging from 14% to 35%. 
The yield-related traits of wheat exhibited nearly normal distribution (Figure S1a). The correlation analysis results (Table 
S3, Figure S1b) indicated a significant correlation between KNS and KWS (r = 0.899) along with TIN and ETN (r = 0.844). 
The WGT was negatively correlated with KNS and KWS.

Population structure and linkage disequilibrium
The 90 K wheat SNP array with 77,024 SNPs was used for genotyping. After quality control, 73,156 SNP markers were 

used for the association mapping. According to the results of PCA analysis (Figure S2a) and evolutionary tree analysis 
(Figure S2b), wheat could be divided into two subgroups according to winter wheat and spring wheat. Some of the 
samples were more complex, indicating that the gene exchange between the natural populations was relatively frequent.

The LD decay distance was calculated using PopLDdecay software. The LD decay diagram (Figure S2c, d) illustrates 
that the average LD decay distance in the population is 5 Mb. The LD attenuation distance was greater than the average 
distance between markers (0.28 Mb).

Genome-wide association analysis
Based on four different models (MLM, FarmCPU, BLINK, and CMLM), a total of 335 significantly associated loci with 

traits were detected, distributed across 21 chromosomes. The phenotypic variance (PVE) ranged from 3.58% to 14.96% 
(Table S4, Figure 1). Notably, 75 significant loci were detected by more than two models, and 53 loci were pleiotropic 
(significantly associated with multiple traits). For subsequent candidate gene prediction, 88 stable associated loci were 
identified as reliable trait-linked loci. The results from the four models mutually validated each other, enhancing the 
reliability of the analysis.

For plant height, nine significant loci were mapped, explaining 6.72% to 8.78% of phenotypic variance. Three significantly 
associated loci were obtained in the 16.93–18.54 Mb interval on chromosome 4D, which were significant in all four 
models. Twenty-four SNPs were significantly associated with KNS, explaining 3.58% to 7.79% of phenotypic variance, with 
21 significant loci clustered in the 585.48–589.24 Mb interval on chromosome 5A. For KWS, nine significant loci were 
identified, explaining 4.99% to 8.37% of phenotypic variance. Among them, loci Affx-109116213 and Affx-110331741 
were also significantly associated with KNS, indicating they are pleiotropic. Six significant loci for TKW were detected, 
explaining 5.11% to 6.95% of phenotypic variance, distributed on chromosomes 1B, 3A, 7A, 6B, and 7B, respectively.

Six SNPs were significantly associated with the tiller number, explaining 5.22% to 7.37% of phenotypic variance, 
with five significant loci within an 805 kb region on chromosome 5A. Fifty-four SNPs were significantly associated with 
WGT, explaining 6.00% to 14.20% of phenotypic variance, while 60 SNPs were associated with WS, explaining 6.00% 
to 14.96%. Due to the strong correlation between WS and WGT, 61 loci were significantly associated with both traits, 
including 33 loci on chromosome 5A distributed in the 470.24–691.83 Mb interval.
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Figure 1. Manhattan plots of association analysis for eight traits using the MLM, FarmCPU, BLINK, and CMLM models. a. Plant height 
(PLH), b. Tiller number (TIN), c. Effective tiller number (ETN), d. Kernel weight per spike (KWS), e. Thousand-grain weight (TKW), f. 
Kernel number per spike (KNS), g. Whole growing stage (WGT), h. Winter-spring type (WS). X- and Y-axes represent the SNP markers 
along each chromosome of wheat and the -log10

(P-value), respectively. The dotted lines designate -log10
(10− 4), which was regarded as the 

threshold for significant associations.
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Linkage disequilibrium haplotype block analysis
Haplotype analysis was conducted for KNS (Figure 2), ETN (Figure S3), TKW (Figure S4), and KWS (Figure S5). Regarding 

KNS, five SNP markers were found near Affx-109116213 in the region of 586.14-586.60 Mb on chromosome 5A span LD 
Block1 (Figure 2a, b). This Block has three haplotypes (5A_B1_Hap1, 5A_B1_Hap2, and 5A_B1_Hap3). The distribution 
frequencies were 0.524, 0.45, and 0.012, respectively (Figure 2c). The mean values of KNS for each haplotype were 28.98, 
38.97, and 32.19, respectively. The KNS with the 5A_B1_Hap2 haplotype was significantly higher than those with the 
5A_B1_Hap1 and 5A_B1_Hap3 haplotypes (Figure 2d), while the WGT of the 5A_B1_Hap2 haplotype was significantly 
lower than that of the 5A_B1_Hap1 and 5A_B1_Hap3 haplotypes (Figure 2e).

Among the six SNPs significantly associated with ETN, five SNPs spanning 0.26 Mb on chromosome 6D form a LD 
block (Figure S3a, b). Two haplotypes, 6D_B1_Hap1 and 6D_B1_Hap2, were detected with the frequency distribution of 
0.912 and 0.088, respectively (Figure S3c). The number of effective tillers with haplotype 6D_B1_Hap1 was significantly 
higher than that with haplotype 6D_B1_Hap2 (Figure S3d).

On chromosome 3A, near the Affx-109174053 marker significantly associated with TKW, a 51 kb region formed 
two LD blocks (Figure S4a, b). Block1 contains the four haplotypes 3A-B1-Hap1, 3A-B1-Hap2, 3A-B1-Hap3, and 3A-B1-
Hap4, with distribution frequencies of 0.402, 0.377, 0.187, and 0.026, respectively (Figure S4c). The TKW means for 
these haplotypes are 45.15, 44.94, 48.17, and 46.34, respectively, with 3A-B1-Hap3 showing significantly higher TKW 
than the others (Figure S4d). Block2 also has four haplotypes: 3A-B2-Hap1, 3A-B2-Hap2, 3A-B2-Hap3, and 3A-B2-Hap4, 
with frequencies of 0.591, 0.307, 0.013, and 0.081 (Figure S4c). Their mean TKWs are 46.11, 44.67, 44.65, and 44.59, 
respectively, and 3A-B2-Hap1 shows better thousand kernel weight than the other haplotypes (Figure S4d).

Haplotype analysis was conducted for KWS. A 138-kb LD block was formed near the Affx-109347856 marker on 
chromosome 4B (Figure S5a, b). The 3 haplotypes detected in this block were 4B-B1-Hap1, 4B-B1-Hap2, and 4B-B1-
Hap3, with distribution frequencies of 0.640, 0.243, and 0.071 (Figure S5c), and their corresponding grain weights per 
spike were 1.46, 1.58, and 2.00, respectively. Haplotype 4B-B1-Hap3 showed significantly higher grain weight per spike 
than the other two haplotypes (Figure S5d).

A haplotype takes two or more SNP alleles as one genetic unit and largely improves the reliability of association 
analysis, which has become one of the important means of molecular marker-assisted breeding application (Liu and 
Zhang 2016, Chaves et al. 2020). In this study, haplotype analysis was performed on the KNS, ETN, TKW, and KWS. The 
number of effective tillers and distribution frequency in 6D_B1_Hap1 were significantly higher than those in 6D_B1_
Hap2, indicating that the haplotype of 6D_B1_Hap1 was subjected to positive selection by breeders and was widely 
used in wheat breeding. In addition, three haplotypes were formed for KNS on chromosome 5A. The number of grains 
per spike of the haplotype 5A_B1_Hap2 with a significantly higher KNS and shorter WGT than that of 5A_B1_Hap1 and 
5A_B1_Hap3 indicated that haplotype 5A_B1_Hap2 had a large utility for the genetic improvement of grain number per 
spike and the whole growth period. Haplotype 4B_B1_Hap3 had better grain weight per spike, and 3A_B1_Hap3 had 
significantly higher TKW than other haplotypes. However, their current distribution frequencies are low, so focusing on 
breeding these superior haplotypes is recommended.

Candidate gene prediction
In this study, 73 potential candidate genes associated with multiple wheat yield traits were identified (Table S5). 

The four genes are TaTB1-4D, TaVRN1-5A, PhyC, and Pinb, and the remaining 69 are novel genes. The four candidate 
genes related to wheat tillering were TraesCS6D01G166500, TraesCS5A01G508000, TraesCS5A01G506900, and 
TraesCS5A01G506800. TraesCS6D01G166500, which are involved in processes related to hexose transferase activity. Nine 
candidate genes associated with wheat plant height were identified (Table S5). The proteins encoded by these genes 
include extra-large GTP-binding protein 3, Acetyl-CoA carboxylase, cotton fiber protein, and Acetolactate synthase. Many 
of these enzymes have catalytic activities and are involved in various metabolic pathways during plant growth. TaTB1-
4D was located in the region of 18.461–18.465 Mb on chromosome 4D and was very closed to Rht1 (Peng et al. 1999); 
thus, it can be considered the same as Rht1. This study also identified 12 candidate genes significantly associated with 
thousand-grain weight and KWS. Their encoded products cover F-box/RNI-class superfamily proteins, glyceraldehyde-
3-phosphate dehydrogenase, 30S ribosomal protein S1, ethylene-responsive transcription factors, etc. 
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Additionally, 49 candidate genes associated with the winter-spring characteristics and the entire growth period of 
wheat were identified. The proteins encoded by these genes include dynamin-like proteins, peroxisomal membrane 
protein 2, DUF2431 domain-containing proteins, ABC transporter B family proteins, and mitochondrial carrier family 
proteins. Notably, the candidate gene TraesCS5A01G391300 is a cloned gene of PhyC (Mizuno et al. 2012) related to 
heading date. The candidate gene TraesCS5A01G391700, annotated by significant marker Affx-110331741, was the 
vernalization gene TaVRN1-5A (Yan et al. 2003). The candidate gene TraesCS5D01G004300 annotated by the marker 
Affx-88590952 is grain hardness gene Pinb (Bhave and Morris 2008), suggesting that vernalization traits affect the grain 
material accumulation pattern through genetic linkage and developmental process regulation. Twenty candidate genes 
associated with the number of grains per spike were identified, 18 of which were located on chromosome 5A and 
simultaneously related to vernalization and the whole growing stage. The other two candidate genes -TraesCS4B01G268100 
and TraesCS7A01G072400- were also significantly associated with KWS. TraesCS7A01G072400 is located in different 
regions of the same chromosome as the reported grain number genes WAPO1 (674.081–674.082Mb) (Kuzay et al. 
2019) and TaPIN1-7A (148.414–148.418 Mb) (Yao et al. 2021), suggesting it is a novel gene related to spike traits. 
TraesCS4B01G268100 (541.910–541.912 Mb) is close to the reported grain number gene SVP3-4B (589.180–589.195 
Mb) (Li et al. 2020) and may has similar gene functions. 

Reliability of multi-model GWAS in mapping complex agronomic traits
A total of 335 significantly associated loci for 8 yield-related traits through joint analysis were using four 

models. Among them, 88 loci showed stable pleiotropy across multiple models, confirming the effectiveness 
of multi-model cross-validation in controlling false positives in GWAS. Compared with single-model analysis, 
multi-model integration enhances mapping accuracy. For example, the Affx-110331741 locus was significantly 
associated with WGT, WS, and KNS in both CMLM and MLM, and its annotated TraesCS5A01G391700 gene 
is the known vernalization and flowering gene TaVRN1-5A (Yan et al. 2003), validated as a key locus through 
multi-model integration.

Figure 2. Genome-wide association study results for KNS and the analysis of the haplotype of KNS on chromosome 5A. a. Manhattan 
plot for Kernel number per spike (KNS). The horizontal line represents the significance threshold (-log10 (P-value) = 4). The arrows 
indicate the location of the main peaks studied. b. Genomic locations of four SNP loci and the LD based on paired D’ values between 
SNPs on chromosome 5A. c. Haplotypes detected in 250 accessions based on the four SNPs. d. Differences in the KNS among three 
haplotypes. e. Differences in the wheat growing stage among three haplotypes.
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Genetic mechanism interpretation of yield trait-associated loci
In the 585.48–589.24 Mb interval on chromosome 5A, this study mapped 21 SNPs significantly associated with KNS, 

which partially overlaps with the SC/SL QTL cluster (381.76–533.29 Mb) (Li et al. 2021), suggesting conserved expression of 
the same QTL under different genetic backgrounds. Notably, the 585.5–595.4 Mb region on chromosome 5A enriches 27 
pleiotropic SNPs related to WS, WGT, and KWS, located only 11.3 Mb from the winter-spring trait gene TaPIL1 (574.194–
574.199 Mb) (Zhang et al. 2022), implying that this region may regulate multi-trait co-expression through photoperiod 
response. Five tillering inhibitory genes (Tin1, Tin2, Tin3, Tin4, and Ftin) have been reported (Spielmeyer and Richards 
2004, Kuraparthy et al. 2007, Zhang et al. 2013, Wang et al. 2022). However, the tillering-related region (chr6D:23.15–
23.42Mb) identified here does not overlap with TaPIN1-6D (chr6D:397.082–397.084 Mb) (Yao et al. 2021), suggesting 
a novel QTL. Additionally, the close linkage of the plant height-associated locus Affx-108864084 with Rht1 (Peng et al. 
1999) validates the selection signature of dwarf genes in modern variety improvement. 

Research limitations and future directions
Although multi-model analysis improved locus reliability, some minor-effect QTLs (e.g. PVE < 5%) might remain 

undetected due to sample size limitations. Follow-up studies could integrate multi-year phenotypic data from different 
ecological zones in Ningxia to efficiently enhance detection of weak-effect loci via Meta-GWAS. Furthermore, fine mapping 
and transgenic validation are required to resolve causal variations in the yield gene cluster on chromosome 7B and the 
pleiotropic region on chromosome 5A. Stress-resistant genes embedded in Ningxia’s germplasm resources should be 
further explored for application in stress-resistant breeding through integration of association analysis and phenomics.
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