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Abstract: Plant breeding programs often involve several segregating populations 
that must be selected for multiple traits. This study aimed to identify tropical 
wheat populations combining earliness and high grain yield (GY) using univariate 
and multivariate best linear unbiased prediction (BLUP)-based models within 
a stage-wise approach. Fifty-six F₂ and F₃ populations were evaluated in two 
environments for days to heading (DH) and GY. In the first stage, two model-
ing strategies were used: a univariate and multivariate model per generation. 
Genetic parameters and empirical genotypic values were estimated and used 
in the second stage for combined selection across generations. Both strategies 
yielded similar results in terms of genetic gains, genotype selection, and rank-
ing, likely due to the low correlation between the traits. Populations 4H, 2F, 2D, 
2A, 2E, 3E, 1G, 3A, 3B, 2G, 3F, 1D, and 1B were selected for earliness and yield 
and will be advanced to derive superior inbred lines.
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INTRODUCTION

Wheat (Triticum aestivum L.) is a staple crop in many countries worldwide, 
primarily because of its high nutritional value and broad versatility (Hazard et 
al. 2020). Plant breeding plays an important role in the development of cultivars 
adapted to target environments and features desired by growers and consumers. 
To develop the best cultivars, wheat breeding programs must obtain a large 
number of segregating populations with high genetic variability and a high 
frequency of favorable alleles (Fasahat et al. 2016). Therefore, many populations 
are generated during each cycle, resulting in laborious evaluation and selection 
processes, in which the best candidates are selected after evaluating a set of 
traits to define their superiority (Machado e Silva et al. 2023).

Ordinary least squares-based inferences impose challenges in the selection 
of the best populations because each trait is analyzed individually and 
considered independent. Nevertheless, these drawbacks can be overcome 
using linear mixed models (Patterson and Thompson 1971, Henderson 1975). 
Mixed models can handle unbalanced data and model covariance structures. 
In addition, selection decisions are based on genotypic values predicted via 
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(best linear unbiased prediction (BLUP) using variance components estimated by restricted maximum likelihood (REML) 
(Silva et al. 2024). A key feature of BLUP is that it produces predictions that shrink toward the mean, which maximizes 
the correlation between the true and predicted genetic values (Piepho et al. 2008). To avoid selection bias and obtain 
empirical BLUPs, the multivariate BLUP methodology proposed by Henderson and Quaas (1976) is often used. This type 
of analysis tends to be more accurate because it simultaneously considers a greater amount of data and uses genetic 
and residual correlations between traits.

In addition to multivariate BLUP, several simultaneous selection indices have been developed to address the need 
for multi-trait selection. The multi-trait genotype–ideotype distance index (MGIDI) has emerged as a powerful strategy 
for selecting superior genotypes across multiple traits by simultaneously considering their desirable directions (Olivoto 
and Nardino 2021). Recent applications have demonstrated its effectiveness in identifying superior genotypes (Salami 
2025) and improving selection efficiency using BLUP and BLUE (Archangi et al. 2022).

Mult﻿ivariate BLUP-based methods have been reported for perennial crops (Viana et al. 2010), corn (Viana et al. 
2011), grain sorghum (Souza et al. 2019) and soybean (Volpato et al. 2019). Nevertheless, its combination with the 
MGIDI for selection candidate analysis has often been overlooked, particularly for wheat. In this study, we hypothesized 
that employing a multivariate BLUP model could leverage the selection of segregating populations. Thus, we compared 
the genetic parameters obtained by fitting both univariate and multivariate models. The variance components and 
empirical BLUPs obtained during the first stage were used in the second stage as inputs in a combined selection strategy 
to evaluate genetic gains and genotype ranking. Finally, we selected the best performing tropical wheat population for 
grain yield (GY) and earliness.

MATERIAL AND METHODS

Genetic material and experimental design
A panel of 56 wheat segregating genotypes belonging to the Wheat Breeding Program of the Federal University of 

Viçosa (UFV) were obtained from crosses involving eight parents in a complete diallel scheme (Table 1), with the aim of 
earliness and GY. The F1 populations were obtained in 2019 and advanced in a greenhouse during summer 2020. The 
F2 populations were evaluated in the field during winter 2020. Subsequently, the populations in the F3 generation were 
evaluated in the field during summer 2021.

Initially, the F2 generation was evaluated in the Diogo Alves de Melo experimental field, which belongs to the 
Department of Agronomy of UFV, Viçosa, MG, Brazil. The 56 F2 combinations and eight parents were evaluated using a 
square lattice (8 × 8) experimental design with two replicates. The experimental plots consisted of three 3 m rows with 
0.2 m row spacing and a sowing density of 10 seeds m-1. The soil was conventionally prepared and the experiment was 
conducted under sprinkler irrigation.

The F3 seeds harvested from the previous experiment were evaluated in a field experiment during summer 2021 in 
São Gotardo, MG, in an experimental area of Cooperativa Agropecuária do Alto Paranaíba. The 56 F3 combinations and 
eight parents were evaluated using a square lattice (8 × 8) experimental design with two replicates. The experimental 
plots consisted of five 5 m rows with 0.2 m row spacing and 350 seed m-2 sowing density. Sowing was conducted in a 

Table 1. Description of the parents used in an 8 × 8 diallel scheme

Code
Cultivar Breeder Pedigree Release

♀ ♂
1 A CD 1303 Coodetec CD 150// BRS 177 2016
2 B BRS 254 Embrapa Buck Buck/Chiroca//Tui 2005
3 C BRS 264 Embrapa Embrapa 22*3/Anahac 75 2005
4 D BRS 394 Embrapa Embrapa 22//CM 106793 2014
5 E TBIO Aton Biotrigo TBIO Mestre/Fuste//TBIO Mestre 2018
6 F TBIO Duque Biotrigo Toruk#3/Celebra//Noble 2018
7 G TBIO Ponteiro Biotrigo Fuste/TBIO Mestre 2017
8 H TBIO Sossego Biotrigo BIO 08400 ‘S’/Quartzo//Quartzo 2015
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direct sowing system, and the experiment was conducted without irrigation. For both experiments, fertilization and 
agrochemical application followed the recommendations for wheat cultivation in Brazil (Embrapa 2020).

Traits evaluated
Days to heading (DH) were evaluated when at least 50% of the plants in the plots had fully exposed ears, and GY (kg 

ha-1) was evaluated after all plants in the plot were harvested, tracked, and weighed on a precision scale.

Statistical modeling
During the first stage, the REML/BLUP procedure was adopted to estimate the genetic parameters and predict 

empirical genotypic values using two different strategies: a univariate (Strategy I) and multivariate (Strategy II) model 
for each generation. The different modeling strategies are described as follows:

Strategy I - Univariate model
y = Xβ + Zg + Wb + e

where y is the phenotypic value vector; β is the replication fixed effects vector, added to the overall mean; g is the 
genotypic effects vector (assumed to be random), where g ~ N(0,Iσ2

g); b is the incomplete blocks effects vector (assumed 
to be random), where b ~ N(0,Iσ2

b); and e is the error vector, where e ~ N(0,Iσ2
e). X, Z, and W are the incidence matrices 

for effects β, g, and b.

Strategy II - Multivariate model
y1 = Xβ1 + Zg1 + Wb1 + e1 

where y1 is the multivariate response vector associated with each genotype; β1 is the replication fixed effects vector, 
added to the overall mean; g1 is the genotypic effects vector associated with each trait (assumed to be random), g1 
~ N(0,Iσ2

g1); b1 is the incomplete block effects vector (assumed to be random), b1 ~ N(0,Iσ2
b1) and e1 is the error vector, 

where e ~ N(0,Iσ2
e1). X, Z and W are the incidence matrices for effects β1, g1 and b1. In both the univariate and multivariate 

models, blocks were considered random effects to allow for the generalization of inferences beyond the specific blocks 
used in the experiment.

In the univariate approach, the response vector includes only one trait at a time. In contrast, in the multivariate 
approach, the response vector simultaneously includes two traits (GY and DH, in this study). This allows the prediction of 
genotypic values to account not only for the performance of each trait individually but also for the correlation structure 
between traits, thereby providing a more comprehensive basis for selection.

The significance of random effects was tested using the likelihood ratio test (LRT) (Wilks 1938), as follows:

LRT = ‒ 2 (LogLF ‒ LogLR)

where LogLF and LogLR are the logarithm of the restricted likelihood function of the full and reduced models, respectively. 
The significance of random effects was tested using at chi-square distribution with a 5% probability.

The variance components were used to estimate broad-sense heritability (h2) as follows:

h2 = 
σ2

g

σ2
p

 

where σ2
g and σ2

p are the genotypic and phenotypic variances, respectively. The selection accuracy (h) was calculated 
as h = h2 .

Population selection
The variance components and empirical genotypic values obtained in the first stage were used as inputs in the 

second stage for a combined selection of the best-performing populations. The MGIDI, proposed by Olivoto and Nardino 
(2021), which calculates genotype scores based on factor analysis, was used to rank genotypes based on information 
from multiple traits, in this case, the DH and GY BLUPs in each generation. The MGIDI was fitted as follows:
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MGIDIi = [Σf

j=1 (γij ‒ γj)
2]0.5

where MGIDIi is the MGIDI for the i-th genotype; Yij is the score of the i-th genotype in the j-th factor (i = 1, 2, …, g; j = 
1, 2, …, f); g and f are the number of genotypes and factors, respectively; and Yj is the jth ideotype score.

The percentage selection gain (SG) was calculated for each trait considering a selection proportion of 25%, as follows:

SG% = μs ‒ μo

μo

 × 100  

where µs is the mean of the selected populations, and µo is the original mean.

The agreement between the strategies on population rankings was evaluated using the kappa coefficient (K) proposed 
by Cohen (1960) as follows:

K = po ‒ pc

1 ‒ pc

where po is the proportion of matching selected genotypes and pc is the proportion of matching selected genotypes 
expected by chance.

Softwares
The ASReml-R version 4.1 software (Butler et al. 2018) was used for deviance analysis and prediction of the empirical 

BLUPs. Using R software (R Core Team 2020), the MGIDI selection index was adjusted according to the protocol provided 
by Olivoto and Nardino (2021) in the metan package (Olivoto and Lúcio 2020). The kappa index was calculated using the 
IRR package (Gameret al. 2022). Finally, figures were obtained using the ggplot2 package (Wickham 2016).

RESULTS AND DISCUSSION

Population performance across generations is shown in Figure 1. On average, F2 populations exhibited higher GY 
(2,729.31 kg ha⁻¹), but longer cycles (68.35 DH) compared to F3 populations (1,747.32 kg ha⁻¹ and 57.45 DH). This inverse 
relationship between yield and earliness reflects a known trade-off in wheat breeding, where late-flowering genotypes 
often have extended grain filling periods and greater biomass (Wang et al. 2019). In addition, the differences in GY 
and DH between generations can be explained by the distinct environmental conditions under which the experiments 
were conducted. The F2 generation was cultivated under irrigated conditions to ensure consistent water availability 
throughout the cycle. In contrast, the F3 generation was grown under rainfed conditions and was exposed to variable 
precipitation and potential water stress. This shift in the water regime likely contributed to the observed reduction in 
GY and a shortened cycle length in the F3 generation. The Cerrado region is characterized by a pronounced dry season 
and erratic rainfall distribution during the wet season (Nóia Júnior et al. 2024). Rainfed cultivation in this environment 
often leads to suboptimal water availability during critical phenological stages, such as flowering and grain filling, which 
are highly sensitive to drought stress (Nardino et al. 2022). These findings highlight how environmental regimes strongly 
influence trait expression in segregating generations and reinforce the importance of considering irrigation versus rainfed 
management when interpreting results and making breeding decisions for Cerrado growing conditions.

The demand for early and high-yielding genotypes of wheat has increased due to the need for land-use intensification 
and reduced exposure to climatic and biotic stresses (Wang et al. 2019, Hazard et al. 2020). Historically, yield improvements 
have been driven by genetic gains and multidisciplinary efforts in breeding programs (Beche et al. 2014). However, 
these gains have slowed in recent decades, likely because of the increasing impact of climate change, environmental 
unpredictability, and the complex genetic control of yield (Ray et al. 2012, Van Roekel et al. 2015, Lo Valvo et al. 2018).

Genotypic variance estimates were significant for most trait-generation combinations in both univariate and multivariate 
models, indicating sufficient genetic variability for selection (Table 2). An exception occurred for GY in the F2 generation 
under the univariate model (Strategy I), suggesting environmental noise or early-stage instability in expression. These 
results reinforce the importance of evaluating populations across multiple generations and environments, which is 
commonly practiced in wheat breeding programs (Scheeren and Caierão 2015). These evaluations are typically performed 
in different environments (seasons, locations, and years), which allow for the accumulation of a considerable amount 
of information that needs to be explored to guide data-driven decisions. Therefore, the need to identify techniques 
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that ensure the existing amount of information, obtained from accurate prediction of empirical genotypic values of 
individuals or populations under selection, is desirable in any breeding program (Henderson 1974).

Broad-sense heritability and selection accuracy were higher for DH than for GY, particularly under Strategy I. For 
example, heritability for DH reached 0.76 and 0.91 in F2 and F3, respectively, compared to 0.30 and 0.33 for GY. This 
disparity reflects both higher environmental sensitivity and the complex polygenic architecture of yield (Van Roekel et 
al. 2015).

Strategy II, which applied multivariate BLUP modeling (Henderson and Quaas 1976), produced lower or equivalent 
predictive accuracy values (h ≈ 0.57 across traits and generations). The weak correlations between DH and GY (r = 0.07 
in F2; r = 0.18 in F3) limited the advantage of multivariate modeling. Although multivariate approaches are theoretically 
more accurate when leveraging genetic and residual correlations (Piepho et al. 2008), their benefits are reduced when 
the traits are poorly correlated (Volpato et al. 2019).

Nonetheless, the MGIDI applied during the second stage led to promising SGs under both strategies (Figure 2). 
Univariate modeling achieved the highest overall gain (18.07%) compared to 15.26% for the multivariate approach, 

Figure 1. Average values of 56 F2 (Viçosa, MG) and F3 (São Gotardo, MG) populations and eight parents for the DH (A) and GY (B) traits.
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particularly for DH in F3 (5.90%) and GY in F2 (6.51%). This demonstrates the effectiveness of the MGIDI in capturing 
multi-trait performance, even when traits show a weak correlation (Olivoto and Nardino 2021).

Population ranking and selection were largely consistent between the models. Twelve populations were selected 
using both strategies, including 4H, 2F, 2D, and 1G, with population 2F ranking first under both approaches (Figures 
3 and 4). A K of 0.83 (Figure 5) confirms a strong agreement and validates the robustness of the selection outcomes 

Table 2. Parameters estimated from the univariate and multivariate models for the DH and GY (kg ha-1) traits considering the F2 and 
F3 populations and their parents

Parameter
Strategy I

F2 F3

DH GY DH GY
σ̂ 2

b 0.31 12,762.68 8.74 × 10-7 1,206.97
σ̂ 2

g 21.70* 104,267.57 30.01* 13,019.84*

σ̂ 2
e 6.65 227,483.60 3.09 25,503.31

h2 0.76 0.30 0.91 0.33
h 0.87 0.55 0.95 0.57

Parameter
Strategy II

 F2 F3

DH:GY
σ̂ 2

b 6.00 × 10-7 6.00 × 10-7

σ̂ 2
gDH 21.00* 30.00*

σ̂ 2
gGY 110,000.00* 1,217.67*

σ̂ 2
e 1.00 1.00

σ̂ 2
eDH:DH 6.60 3.09

σ̂ 2
eDH:GY 200.00 1.07

σ̂ 2
eGY:GY 230,000.00 26,778.37

ρDH:GY -0.07 0.18
h2 0.32 0.32
h 0.57 0.57

Strategy I: univariate model for each generation; Strategy II: multivariate model for each generation; σ̂ 2
b : block variance; σ̂ 2

g: genotypic variance; σ̂ 2
e : residual variance; 

σ̂ 2
b:ger: block variance within generation; σ̂ 2

g : genotypic variance;  σ̂ 2
g:ger: genotypic variance within generation; σ̂ 2

gDH: variance of DH; σ̂ 2
gGY: variance of GY; σ̂ 2

eDH:DH: residual 
variance of DH within DH; σ̂ 2

eDH:GY: variance of DH within GY; σ̂ 2
eGY:GY: variance of GY within GY; ρDH:GY: correlation between DH and GY; h2: heritability; h: selective accuracy; 

*: significant at 5% probability by the Chi-square test.

Figure 2. Percentual Selection Gain (SG) of the best performing segregating populations selected in the second stage by MGIDI us-
ing the genetic parameters and empirical genotypic values obtained in the first stage, considering two distinct modeling strategies. 
Strategy I: univariate model for each generation; Strategy II: multivariate model for each generation; DH_F2: DH in generation F2; 
DH _F3: DH in generation F3; GY_F2: GY in generation F2; GY _F3: grain yield in generation F3.
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Figure 3. Sankey plot of the best performing segregating populations selected in the second stage by MGIDI using the genetic param-
eters and empirical genotypic values obtained in the first stage, considering two distinct modeling strategies. Strategy I: univariate 
model for each generation; Strategy II: multivariate model for each generation.

Figure 4. Classification of 56 wheat populations (ascending order) in the second stage by MGIDI using the genetic parameters and 
empirical genotypic values obtained in the first stage, considering two distinct modeling strategies. Strategy I: univariate model for 
each generation; Strategy II: multivariate model for each generation. Black dots indicate non-selected genotypes, red dots indicate 
selected genotypes.

Kappa coefficient = 0.83.
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(Cohen 1960). These results highlight the reliability of 
both modeling approaches in the presence of a low 
trait correlation.

As previously discussed by Henderson (1974), BLUP-
based prediction allows for an unbiased estimation of 
genotypic values under selection, thereby improving 
breeding decisions. The current results confirm that even 
under weak trait correlation, stage-wise selection supported 
by BLUP and MGIDI can effectively guide the derivation of 
superior inbred lines.

Despite the fact that strategy I demonstrated a slightly 
higher genetic gain than strategy II, one could say that 
these models were equivalent in the current study, because 
the differences in genetic gains were negligible, and they 
agreed on the selection of the best candidates. As discussed 
previously, strategy II did not present any advantages 
over strategy I because the traits were poorly correlated. 
In cases where traits are highly correlated, genetic gains 
can benefit from multivariate approaches that model the 
covariance structures of the relationships between traits, 
as demonstrated in other studies (Volpato et al. 2019).

The patterns observed here are consistent with those 
of previous reports on wheat (Ghaed-Rahimi et al. 2014, 
Tahmasebi et al. 2014, 2017, Sobhanian et al. 2019). Other 
studies have also demonstrated that integrating genetic 
variance estimation with molecular or statistical tools enhances accuracy and accelerates genetic gains (Salarpour et 
al. 2021, Heidari 2024). Our results confirm that, even under contrasting water regimes and weak trait correlations, 
sufficient genetic variability exists for selection and effective gains can be realized. Compared to traditional selection 
approaches, the strategies tested here offer clear advantages. Strategy I (univariate BLUP) maximizes accuracy when 
traits are independent or weakly correlated, whereas Strategy II (multivariate BLUP) is most useful when exploiting 
strong correlations among traits. Use of the MGIDI in both strategies further improved multi-trait selection efficiency, 
demonstrating its value in identifying populations with superior overall performance. Collectively, these approaches 
provide breeders with flexible tools to optimize selection decisions in variable environments.

CONCLUSION

This study demonstrated that both univariate and multivariate BLUP-based models are effective tools for the stage-
wise selection of segregating wheat populations for GY and earliness. Despite the theoretical advantages of multivariate 
models, particularly when traits are correlated, the low correlation between DH and GY in this study limited the benefits 
of the multivariate approach. Consequently, the univariate model yielded slightly higher predicted genetic gains, 
particularly for earliness.

Nonetheless, both strategies showed strong agreement in population ranking and selection, as evidenced by the 
high K. A set of 13 populations, 4H, 2F, 2D, 2A, 2E, 3E, 1G, 3A, 3B, 2G, 3F, 1D, and 1B, were consistently selected across 
the methods and represented promising candidates for the development of tropical wheat inbred lines that combine 
early flowering and high yield.
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