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Abstract: Asian soybean rust (ASR) is a major threat due to its aggressiveness,
fungicide tolerance, and ability to overcome resistance genes. Breeding high-
yielding cultivars under ASR pressure presents challenges, including low early
selection accuracy and managing several lines. This study evaluated whether
early agronomic traits could predict yield in later generations under ASR. Traits
assessed included seed yield, days to flowering and maturity, plant height, and
50-seed weight. F,or F, data were used in regression and machine learning
models to predict yield in F,  progenies. Similar R? values across approaches
suggested a mainly linear relationship among predictors. Using F, data im-
proved R? especially for flowering, maturity, and height. Univariate models with
these traits performed best, reaching R?values up to 52.12%. These models can
improve early selection and reduce the breeding workload.

Keywords: Agronomic trait, indirect selection, linear regression, machine
learning, Phakopsora pachyrhizi

INTRODUCTION

Asian soybean rust (ASR) is caused by Phakopsora pachyrhizi, and poses a
severe threat to soybean production, leading to near-total yield losses in affected
areas (Santos et al. 2018, Chicowski et al. 2023). The pathogen exhibits low
sensitivity to fungicides and quickly overcomes plant resistance genes, making
the development of high-yielding cultivars under disease pressure a crucial goal
for breeding programs, even if such cultivars display susceptibility symptoms
(Godoy et al. 2016, Zambolim et al. 2022).
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However, the number of plants genotyped can be an economically limiting factor for genomic selection, especially in
public-sector breeding programs (Wartha and Lorenz 2021). An alternative may be to predict yield in later generations
using early-stage phenotyping of agronomic traits. Prediction models based on multiple linear regression (MLR) and
machine learning methods such as bagging (BA) and random forests (RF) (Yoosefzadeh-Najafabadi et al. 2021, Sousa et
al. 2021, Piekutowska et al. 2021, Pérez et al. 2024) support informed selection decisions.

This study assessed whether phenotyping agronomic traits in early generations can predict seed yield in later
generations of the population examined by Carvalho et al. (2025). We obtained models for phenotypic prediction
which exhibited higher coefficients of determination (R?) than those for genomic prediction. These results suggest that
phenotypic prediction could improve the efficiency of the selection process by enabling earlier decisions in the breeding
cycle. Incorporating such models into breeding programs may optimize resource use, reduce the scale of field trials, and
support the development of high-yielding cultivars under ASR pressure.

MATERIAL AND METHODS

Field trials

Field experiments were conducted at Embrapa Soja (lat 23° 11’ 37” S, long 51° 11’ 03” W, and alt 630 m asl), Londrina,
PR, Brazil; to evaluate F,, F,, and F,, generations derived from a cross between the ‘BRQ16-5409" and ‘BR13-9499’
soybean lines (Supplementary Tables and Figures). These elite lines were selected for seed yield, with only the ‘BRQ16-
5409’ line being previously exposed to Asian soybean rust (ASR). Neither parental line carries Rpp1 to Rpp7 resistance
genes against Phakopsora pachyrhizi (Childs et al. 2018).

The F, population (230 plants) and the two parental lines (50 replicates each) were grown in November 2019 in 330
randomly single-plant hill plots (one hill plot = one plant) (Lima et al. 2012). Then, we evaluated 230 F, , progenies and
the two parental lines in November 2020 in a completely randomized design with 30 replicates for each parental line
and six replicates (plants) for each progeny, totaling 1,440 hill plots (Figure S1b). Plots were spaced 20 cm apart within
rows and 1.5 m between rows in both 2019 and 2020. Two rows of the susceptible ‘BRS Conquista’ cultivar were planted
as borders within this 1.5 m distance and around the trial area.

In turn, the experimental design in November 2022 involved segregating progenies with intercalary lines comprising
230 F,, progenies, each with six lines (totaling 1,380 F,_ lines), along with the two parental lines and two control
cultivars ‘BRS 531’ (resistant) and ‘BRS 523’ (susceptible) (Figure S1c). The 1,380 F, , plants gave rise to F, , plants, which
subsequently produced seeds for the F2:5 lines under greenhouse conditions. Each parental line and control cultivar
was replicated 30 times. One row of each parental line and control cultivar were sown for every 50 F__ lines, resulting
in 1,500 single-row plots, all 3 m long and spaced 0.5 m apart. The ‘BRS Conquista’ cultivar was also sown as a border
around the trial area.

Crop management followed standard soybean production protocols. ASR inoculum was prepared and applied
to border plants at the V3 stage, following the procedures described by Ribeiro et al. (2008) and Lima et al. (2012).
Phenotypic evaluations included seed yield per plant or progeny (SY), days to flowering (DF) and maturity (DM), plant
height (PH), 50-seed weight (50SW), ASR severity (ASRS), and area under the disease progress curve (AUDPC). The
agronomic traits and ASRS were recorded in the F,, F,, and F,_generations. ASRS was assessed as the percentage of
infected leaf area using a graphical scale (Franceschi et al. 2020). Four evaluations were performed at approximately
7-day intervals starting 80 day post-emergence when the crop canopy had closed and a more favorable microclimate
for infection was established (Isard et al. 2006). AUDPC was calculated by trapezoidal integration (Silveira et al. 2003).
Lesion types were classified as reddish-brown (RB, resistant) or tan-colored (TAN, susceptible) (Goellner et al. 2010).
Plants reached physiological maturity at the R7 stage (Fehr and Caviness 1977), after which they were dried, threshed,
and weighed individually for F, and F_, generations, and by row for F_..

Heritability and correlation

Narrow-sense heritabilities of the agronomic traits were estimated at the individual level in the F, generation (hﬁz)

and at the progeny mean level in the F__ generation (him). Genetic variance components were calculated using the
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weighted least squares method (Mather and Jinks 1984). Both parental lines were cultivated in the same area along
with each F, F,_ and F,_ generations (in 2019, 2020 and 2022) (Figure S1b, c), and were used as checks with 50, 30
and 30 replicates, respectively, obtaining variance among plants in each year to estimate the environmental variance
used to estimate heritability. Phenotypic correlations among traits were estimated within each generation, as well as
the associations between traits evaluated in F, and F_ with SY in F_ _. The statistical significance of the correlations was
assessed using the t-test.

Phenotypic prediction

The predict phenotypic values (PPVs) for SY in F2:5 were calculated using models constructed with MLR (Piekutowska
etal. 2021), BA (Yoosefzadeh-Najafabadi et al. 2021, Sousa et al. 2021), and RF (Prasad et al. 2006, Yoosefzadeh-Najafabadi
et al. 2021, Sousa et al. 2021, Costa et al. 2022, Pérez et al. 2024). Multicollinearity for the MLR model was assessed
via the condition number (CN) of the correlation matrix (Montgomery and Peck 1981). CN values <100 indicated weak,
100-1000 moderate to strong, and >1000 severe multicollinearity. Both BA and RF utilized 500 trees (Costa et al. 2022),
with all variables included in BA and one-third of the variables in RF.

Models used the phenotypic value of individual plants in the F, generation, the mean phenotypic value of six plants
from each F,  progeny, and the mean phenotypic value of six lines from each F__ progeny. Predictions were based on
combinations (response variable vs. predictor variable): F, vs. F,and F_ vs. F__.

The population (230 F, plants or 230 F, , progenies and their respective F, . progenies) was randomly divided
into five groups (folds) of 46 genotypes (F, plants or F, progenies and their respective F,_ progenies) each to
obtain the models. In turn, four folds (184 genotypes) were used in each iteration as the training population and
the remaining fold (46 genotypes) as the validation population. This five-fold cross-validation was repeated four
additional times, resulting in five iterations and ensuring that each genotype participated in four training and one
validation set. We built genomic prediction models using phenotypic data of agronomic traits from each training
population. SY values in F, served as response variables, while traits from F, and F, _ acted as predictors. We then
applied these models to estimate the PPVs of F,_ progenies in the validation sets for each iteration. Predictive
ability was assessed by calculating the correlation between PPVs and observed mean phenotypic values of F__
progenies in the validation population. The mean predictive ability of the models obtained in the five iterations
was defined as the predictive ability of the first validation. This procedure was repeated nine more times, yielding
predictive abilities for 10 validations. Finally, we calculated the mean and the respective standard deviation of the
predictive abilities of the 10 validations.

The Tukey’s test compared the predictive abilities of models obtained using different approaches and agronomic traits
evaluated in the F, and F, . generations. Comparisons between approaches within the same trait and between traits
within the same approach were performed when there was a significant Trait x Approach interaction (p < 0.05). When
the interaction was not significant, comparisons were made among traits and among approaches. Prediction models
based on multiple linear regression and machine learning approaches were compared to evaluate the importance of
additive and non-additive genetic effects on SY prediction.

Regression analyses

Stepwise regression analysis was conducted to identify the independent variables which most strongly explained
the dependent variable. These variables were subsequently incorporated into prediction models constructed using
MLR, BA, and RF. Furthermore, variables that contributed to the prediction of the response variable in the multivariate
analysis were also included. The contribution of each variable was estimated using R? values, while accounting for the
effects of the remaining variables in the MLR model.

Computational analyses

Heritability was calculated using GENFIT (Toledo 1991). Analyses for multicollinearity, correlations, PPVs, regression
analyses, predictive ability, and R? values of the models were conducted using GENES (Cruz 2016).
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RESULTS AND DISCUSSION

Disease progression and symptoms

The 95% confidence intervals (95%Cl) for the AUDPC
traitin the F, population and the ‘BRQ16-5409’ and ‘BR13-
9499’ parental lineswere 1261.4 £ 76.5,1280.2 £ 69.5, and
1345.5 + 72.4, respectively (Figure 1). All plants exhibited
AUDPC values above 1000 in 2019, which were higher than
those observedintheF,  and F_, populations and parental
lines in 2020 and 2022 W|th the values ranging from 737.6
+ 80.8 t0 909.8 + 69.8. The susceptible ‘BRS 523’ cultivar
(875.5 + 62.3) showed similar AUDPC values to the F,_
populationin 2022, whereas the resistant ‘BRS 531’ cultivar
exhibited significantly lower values (255.8 + 48.2). These
differences in AUDPC between resistant and susceptible
genotypes, asillustrated in Figure 1S, were comparable to
or greater than those reported in other studies involving
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Figure 1. Area under disease progress curve (AUDPC) of a soy-
bean population from the cross between ‘BRQ16-5409’ (P1) and
‘BR13-9499’ (P2), under pressure from Asian rust. The resistant
‘BRS 531’ cultivar (R) and the susceptible ‘BRS 523’ cultivar (S)
were also evaluated in the F,  generation.

soybean genotypes with and without Rpp genes (Vuong et
al. 2016, Sacon et al. 2020).

All plants from the parental lines, the susceptible control
‘BRS 523’ and the F,, F, ,, and F, . populations developed TAN-type lesions (tan-colored) with abundant sporulation
(Figure S1d). In contrast ‘BRS 531’ developed RB-type lesions (reddish brown) characterized by limited sporulation and
extensive necrosis. The TAN-type lesions indicate the absence of Rpp genes in the population derived from the cross
between ‘BRQ16-5409" and ‘BR13-9499". The AUDPC values obtained for the F,, F, , and F, _ generations confirmed that
environmental conditions were conducive to disease development in the field (Lima et al. 2012), which provided an
opportunity to construct prediction models for PPVs of soybean genotypes for agronomic traits under Asian soybean

rust pressure.

Regression analyses

Models including DM and 50SW in F, or F__ as explanatory variables were estimated using stepwise regression,
yielding R? values of 46.2% and 56.06%, respectively (Table S1). However, these values were similar to those obtained
from univariate analysis including DM (45.12% in F, and 54.36% on F, ). The regression coefficient values for the univariate
analysis of DM were negative in F, (-5.89) and F_ (-9.40).

When examining the contribution (R?) of each explanatory variable to the response variable prediction in the
multivariate analysis, it can be noted that the greatest contribution of a variable in the model including the other
variables was from DM (R? =5.10%) in F, and from 50SW (R? = 3.44%) in F, _ (Table S2). However, as the other agronomic
variables exhibited non-zero R? values (Table S2), their univariate models were also evaluated in the prediction analyses,
in addition to the multivariate model.

Phenotypic prediction

The prediction models were obtained using the phenotypic value of SYin F_ as the response variable and phenotypic
values of agronomic traitsin F, or F__ as predictor variables. We used the MLR, BA and RF methods to construct univariate
and multivariate models from the tralnlng populations. All traits evaluated in F, or F, _, including SY, were considered in
the multivariate models. These models were then used to predict SY in F, _in the validation populations, and their R?
values are shown in Figures 2 and 3.

No significant trait x approach interaction was observed for the coefficient of determination of the models (Table
S3). Tukey’s test was performed to compare traits or approaches (Figures 2 and 3). Models based on MLR showed
higher R? values than those obtained using machine learning methods (Figures 2a and 3a). Machine learning algorithms
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Figure 2. Coefficients of determination (%) of models obtained
from different approaches (linear regression, bagging, and ran-

dom forest) (a) and agronomic traits (AT: all traits, DM: days to
maturity, DF: days to flowering, PH: plant height, 50SW: 50-seed
weight and SY: seed yield per plant) (b) evaluated in F, and F,,
soybean populations under Asian rust pressure. The models
dependent variable was SY in F__ and the independent variables
were agronomic traits in F,. Models with the same lowercase
letter do not differ by Tukey’s test at 5% probability.

Figure 3. Coefficients of determination (%) of models obtained
different approaches (linear regression, bagging, and random
forest) (a) and from agronomic traits (AT: all traits, DM: days to
maturity, DF: days to flowering, PH: plant height, 50SW: 50-seed
weight and SY: seed yield per plant) (b) evaluated in F_ and Fz:;
soybean populations under Asian rust pressure. The models
dependent variable was SY in F, . and the independent variables

were agronomic traits in F, .. Models with the same lowercase
letter do not differ by Tukey’s test at 5% probability.

are generally effective at capturing nonlinear patterns in predictive modeling (Parmley et al. 2019, Sousa et al. 2021,
Silva Junior et al. 2023). These algorithms make no assumptions about the underlying model, enabling identification of
complex genetic interactions, such as epistasis and dominance, within predictive models (Sousa et al. 2021). Thus, the
superiority of the R? values obtained from MLR-based models indicates a limited contribution of non-additive genetic
effects to SY prediction and suggests a predominantly linear relationship among the predictor variables and consequently
greater importance of additive effects in the expression of SY. Ribeiro et al. (2008) also reported predominantly additive
effects of polygenes controlling soybean yield in the presence and absence of P. pachyrhizi. When additive effects
predominate, selecting segregating populations under severe rust pressure (Figure 1) may be an appropriate strategy
for cultivar development.

Multicollinearity among traits can adversely affect the estimation of coefficients in a regression analysis (Del Conte et
al. 2020). Multicollinearity occurs when the sample observations of the explanatory or predictor variables, or their linear
combinations, are correlated. The variances associated with the estimators of regression coefficients in the presence of
multicollinearity can reach excessively high values, making them unreliable (Bizeti et al. 2004). Furthermore, parameter
estimates may assume absurd values or values that lack coherence with the biological phenomenon under study. In the
present study, the CN of the correlation matrices in F, and F, _ populations was 63.3 and 67.7, respectively, indicating
weak multicollinearity, according to Montgomery and Peck (1981). Thus, we did not perform ridge regression or trait
culling to overcome collinearity problems and estimate univariate and multivariate models (Bizeti et al. 2004).

The mean R? values (46.25% in F, and 52.12% in F, ) for the univariate analyses of DM did not differ statistically (p <
0.05) from those obtained in the multivariate analyses (43.39% in F, and 55.30% in Fm), and were higher than those of
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the other univariate models (Figures 2b and 3b). Along with DM, univariate models using DF or PH exhibited R? values
above 35% when using phenotypic data from the F,, and F,  generations.

The narrow-sense heritabilities at the individual level in F, were 0.59 (SY), 0.79 (DM), 0.86 (DF), 0.84 (PH), and 0.53
(50SW). Heritabilities at the progeny mean level in F, , were 0.43 (SY), 0.95 (DM), 0.85 (DF), 0.93 (PH), and 0.84 (50SW).
These heritability values can influence predictive accuracy. Traits with higher heritability specifically tended to produce
higher R? values in the prediction models. For example, traits with heritabilities around 0.80 in F, resulted in models
with R2 values above 35.74% (Figures 2b and 3b), whereas traits with heritabilities around 0.55 produced models with R?
values below this threshold. Supporting this pattern, Carvalho et al. (2025) also found that traits with greater heritabilities
showed higher R? values in genomic prediction using the population of the present study.

Breeding program

Breeding programs aiming to develop high-yielding soybean cultivars under Asian soybean rust pressure need to
devise strategies to enhance selection accuracy in the early stages and reduce the number of lines under selection in later
stages to increase logistical feasibility. In this regard, MRL and machine learning were performed for indirect selection,
and models were constructed using agronomic trait phenotyping in the early stages of the breeding program (F, or F_,

generation) and yield phenotyping in the later stages (F,.).

Using phenotypic values from F, _ to enhance early-stage selection accuracy, as opposed to F,, increased the R? values
of multivariate models or univariate models for DM, DF, or PH (Figures 2b and 3b). The highest R with F,, data reached
55.30%, while the maximum with F, data was 46.25%. Replacing F, phenotypic values with the mean of F__ progenies
enabled improved model fit. However, although F, _ offers greater accuracy and potential genetic gains, breeders must
weigh this against the increased mechanical and financial costs required to advance this generation. Therefore, the
decision to select in F,  should consider both the improved prediction accuracy and the resource demands associated
with evaluating progeny rows.

As prediction models showed R? values near 50%, evaluating six plants per F, , progeny was adequate, as supported
by previous inheritance studies (Ribeiro et al. 2008, Lima et al. 2012). The F_, F, ., and F_, generations were evaluated in
the field, while F, , was assessed in a greenhouse. However, if agronomic traits are measured in F, F, . can be conducted

R 2’723
in a greenhouse, and vice versa. Additionally, lines can be evaluated in F, , instead of F_, shortening the breeding cycle
by one year.

2:57

Phenotypic prediction enables reducing the number of lines in later selection stages, improving logistical feasibility.
For instance, selecting 2% of 10,000 F, plants yields 200 plants. If each produces 50 F, _ lines, 10,000 lines are generated.
Without prior modeling in the training/validation population, all 10,000 F, plants would result in 500,000 field lines. This
volume hinders maintaining optimal conditions for pathogen development (Bock et al. 2022). Reducing the number of
lines helps preserve environmental suitability, enhancing the effectiveness of selecting productive lines under disease
pressure in advanced breeding stages.

Managing ASR in Brazil involves a soybean-free period, during which planting is prohibited in certain areas to reduce
inoculum pressure for the next season (Godoy et al. 2016). Additionally, growing early-maturing cultivars is another
strategy, as these cultivars spend less time in the field and can escape late-season infections or reduce disease severity
(Zambolim et al. 2022). In this study, DM in F, and F, _ was negatively correlated with SYin F, _(-0.67 and -0.74, respectively)
(Table S4). Furthermore, univariate models using DM as a predictor had the highest R? values (Figures 2b and 3b), with
negative regression coefficients, suggesting that early maturity in early generations contributed to selecting the most
productive F, . progenies. However, unlike typical early sowing conditions in Brazil, the inoculum pressure in our study
differed. While soybeans in Londrina are usually sown from September to December, the trials reported herein were
planted in November and subsequently inoculated with P. pachyrhizi to create high rust pressure, resulting in elevated
ASRS and AUDPC values for all plants (Figure 1). Despite these late-sowing and high ASR pressure conditions, Carvalho et
al. (2025) reported that earlier plants experienced shorter exposure to rust, and this may reduce physiological damage.
However, in this study, positive correlations between grain yield and days to maturity were observed in the F, and F_,
generations (Table S5).
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The accuracy of predictive models in soybean for grain yield has varied according to the objectives of the breeding
program or selection methods (Yoosefzadeh-Najafabadi et al. 2021, Pérez et al. 2024). For example, the genomic prediction
of F, . progenies conducted by Carvalho et al. (2025) based on the population under study generated models with an
R? of up to 36.00% (predictive ability = 0.60). On the other hand, the coefficients obtained from phenotypic prediction,
as shown in Figures 2 and 3, reached 55.30%. In addition to the difference in accuracy of the predictive models, the
cost of genotyping F, plants can be unfeasible for breeding programs in public institutions, depending on the number
of plants genotyped (Wartha and Lorenz 2021). In contrast, evaluating DM, DF, or HP (for example) is a routine activity
in these programs.

In addition to DM, the DF and HP traits in F, (-0.59 and -0.63, respectively) and F, , (-0.81 and -0.72, respectively)
showed negative correlations with SY in F, .. These correlations are consistent with the negative regression coefficients
in the univariate models for these traits. Moreover, the development of early, shorter, and high-yielding cultivars is not
only important for improved rust control, but also for better adaptation to the Brazilian production system.

The possibility of selecting agronomic traits such as DM, DF, or PH in the early breeding stages enables reducing the
segregating lines, enhances the ability to maintain favorable climatic conditions for optimal pathogen development,
and minimizes the need for a larger logistical structure to manage and harvest the lines.

CONCLUSION

Phenotyping of agronomic traits in the early stages of a breeding program can enable selecting seed yield in later
stages of a soybean population under Asian soybean rust pressure. This strategy contributes to cost reduction, facilitates
maintaining favorable climatic conditions for optimal pathogen development, allows for early-generation selection,
reduces the need for extensive physical infrastructure and labor for harvesting and other cultural practices, and increases
genetic gains.
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