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Abstract: Asian soybean rust (ASR) is a major threat due to its aggressiveness, 
fungicide tolerance, and ability to overcome resistance genes. Breeding high-
yielding cultivars under ASR pressure presents challenges, including low early 
selection accuracy and managing several lines. This study evaluated whether 
early agronomic traits could predict yield in later generations under ASR. Traits 
assessed included seed yield, days to flowering and maturity, plant height, and 
50-seed weight. F2 or F2:3 data were used in regression and machine learning 
models to predict yield in F2:5 progenies. Similar R² values across approaches 
suggested a mainly linear relationship among predictors. Using F2:3 data im-
proved R², especially for flowering, maturity, and height. Univariate models with 
these traits performed best, reaching R² values up to 52.12%. These models can 
improve early selection and reduce the breeding workload.
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INTRODUCTION

Asian soybean rust (ASR) is caused by Phakopsora pachyrhizi, and poses a 
severe threat to soybean production, leading to near-total yield losses in affected 
areas (Santos et al. 2018, Chicowski et al. 2023). The pathogen exhibits low 
sensitivity to fungicides and quickly overcomes plant resistance genes, making 
the development of high-yielding cultivars under disease pressure a crucial goal 
for breeding programs, even if such cultivars display susceptibility symptoms 
(Godoy et al. 2016, Zambolim et al. 2022).

Phenotypic selection for yield is often inaccurate in the early stages of breeding 
programs due to the difficulty of evaluating individual plant performance. Due 
to this low accuracy, programs tend to advance a large number of segregating 
lines, increasing both costs and logistical complexity. Predicting yield in later 
generations based on early-stage genotyping could enable early elimination of 
low-potential lines, thereby reducing the number of lines and the experimental 
area required. This approach is especially valuable when working under the 
specific environmental conditions necessary for ASR development (Bock et al. 
2022), which are hard to achieve uniformly across large field trials.

Carvalho et al. (2025) predicted mean soybean agronomic traits in F2:5 
progenies under ASR pressure based on genotyping of an F2 population. 
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However, the number of plants genotyped can be an economically limiting factor for genomic selection, especially in 
public-sector breeding programs (Wartha and Lorenz 2021). An alternative may be to predict yield in later generations 
using early-stage phenotyping of agronomic traits. Prediction models based on multiple linear regression (MLR) and 
machine learning methods such as bagging (BA) and random forests (RF) (Yoosefzadeh-Najafabadi et al. 2021, Sousa et 
al. 2021, Piekutowska et al. 2021, Pérez et al. 2024) support informed selection decisions.

This study assessed whether phenotyping agronomic traits in early generations can predict seed yield in later 
generations of the population examined by Carvalho et al. (2025). We obtained models for phenotypic prediction 
which exhibited higher coefficients of determination (R²) than those for genomic prediction. These results suggest that 
phenotypic prediction could improve the efficiency of the selection process by enabling earlier decisions in the breeding 
cycle. Incorporating such models into breeding programs may optimize resource use, reduce the scale of field trials, and 
support the development of high-yielding cultivars under ASR pressure.

MATERIAL AND METHODS

Field trials
Field experiments were conducted at Embrapa Soja (lat 23° 11’ 37” S, long 51° 11’ 03” W, and alt 630 m asl), Londrina, 

PR, Brazil; to evaluate F2, F2:3, and F2:5 generations derived from a cross between the ‘BRQ16-5409’ and ‘BR13-9499’ 
soybean lines (Supplementary Tables and Figures). These elite lines were selected for seed yield, with only the ‘BRQ16-
5409’ line being previously exposed to Asian soybean rust (ASR). Neither parental line carries Rpp1 to Rpp7 resistance 
genes against Phakopsora pachyrhizi (Childs et al. 2018).

The F2 population (230 plants) and the two parental lines (50 replicates each) were grown in November 2019 in 330 
randomly single-plant hill plots (one hill plot = one plant) (Lima et al. 2012). Then, we evaluated 230 F2:3 progenies and 
the two parental lines in November 2020 in a completely randomized design with 30 replicates for each parental line 
and six replicates (plants) for each progeny, totaling 1,440 hill plots (Figure S1b). Plots were spaced 20 cm apart within 
rows and 1.5 m between rows in both 2019 and 2020. Two rows of the susceptible ‘BRS Conquista’ cultivar were planted 
as borders within this 1.5 m distance and around the trial area.

In turn, the experimental design in November 2022 involved segregating progenies with intercalary lines comprising 
230 F2:5 progenies, each with six lines (totaling 1,380 F2:5 lines), along with the two parental lines and two control 
cultivars ‘BRS 531’ (resistant) and ‘BRS 523’ (susceptible) (Figure S1c). The 1,380 F2:3 plants gave rise to F2:4 plants, which 
subsequently produced seeds for the F2:5 lines under greenhouse conditions. Each parental line and control cultivar 
was replicated 30 times. One row of each parental line and control cultivar were sown for every 50 F2:5 lines, resulting 
in 1,500 single-row plots, all 3 m long and spaced 0.5 m apart. The ‘BRS Conquista’ cultivar was also sown as a border 
around the trial area.

Crop management followed standard soybean production protocols. ASR inoculum was prepared and applied 
to border plants at the V3 stage, following the procedures described by Ribeiro et al. (2008) and Lima et al. (2012). 
Phenotypic evaluations included seed yield per plant or progeny (SY), days to flowering (DF) and maturity (DM), plant 
height (PH), 50-seed weight (50SW), ASR severity (ASRS), and area under the disease progress curve (AUDPC). The 
agronomic traits and ASRS were recorded in the F2, F2:3, and F2:5 generations. ASRS was assessed as the percentage of 
infected leaf area using a graphical scale (Franceschi et al. 2020). Four evaluations were performed at approximately 
7-day intervals starting 80 day post-emergence when the crop canopy had closed and a more favorable microclimate 
for infection was established (Isard et al. 2006). AUDPC was calculated by trapezoidal integration (Silveira et al. 2003). 
Lesion types were classified as reddish-brown (RB, resistant) or tan-colored (TAN, susceptible) (Goellner et al. 2010). 
Plants reached physiological maturity at the R7 stage (Fehr and Caviness 1977), after which they were dried, threshed, 
and weighed individually for F2 and F2:3 generations, and by row for F2:5.

Heritability and correlation
Narrow-sense heritabilities of the agronomic traits were estimated at the individual level in the F2 generation (h2

F2) 
and at the progeny mean level in the F2:3 generation (h2

F2:3). Genetic variance components were calculated using the 
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weighted least squares method (Mather and Jinks 1984). Both parental lines were cultivated in the same area along 
with each F2, F2:3 and F2:5 generations (in 2019, 2020 and 2022) (Figure S1b, c), and were used as checks with 50, 30 
and 30 replicates, respectively, obtaining variance among plants in each year to estimate the environmental variance 
used to estimate heritability. Phenotypic correlations among traits were estimated within each generation, as well as 
the associations between traits evaluated in F2 and F2:3 with SY in F2:5. The statistical significance of the correlations was 
assessed using the t-test.

Phenotypic prediction
The predict phenotypic values (PPVs) for SY in F2:5 were calculated using models constructed with MLR (Piekutowska 

et al. 2021), BA (Yoosefzadeh-Najafabadi et al. 2021, Sousa et al. 2021), and RF (Prasad et al. 2006, Yoosefzadeh-Najafabadi 
et al. 2021, Sousa et al. 2021, Costa et al. 2022, Pérez et al. 2024). Multicollinearity for the MLR model was assessed 
via the condition number (CN) of the correlation matrix (Montgomery and Peck 1981). CN values <100 indicated weak, 
100–1000 moderate to strong, and >1000 severe multicollinearity. Both BA and RF utilized 500 trees (Costa et al. 2022), 
with all variables included in BA and one-third of the variables in RF.

Models used the phenotypic value of individual plants in the F2 generation, the mean phenotypic value of six plants 
from each F2:3 progeny, and the mean phenotypic value of six lines from each F2:5 progeny. Predictions were based on 
combinations (response variable vs. predictor variable): F2:5 vs. F2 and F2:5 vs. F2:3.

The population (230 F2 plants or 230 F2:3 progenies and their respective F2:5 progenies) was randomly divided 
into five groups (folds) of 46 genotypes (F2 plants or F2:3 progenies and their respective F2:5 progenies) each to 
obtain the models. In turn, four folds (184 genotypes) were used in each iteration as the training population and 
the remaining fold (46 genotypes) as the validation population. This five-fold cross-validation was repeated four 
additional times, resulting in five iterations and ensuring that each genotype participated in four training and one 
validation set. We built genomic prediction models using phenotypic data of agronomic traits from each training 
population. SY values in F2:5 served as response variables, while traits from F2 and F2:3 acted as predictors. We then 
applied these models to estimate the PPVs of F2:5 progenies in the validation sets for each iteration. Predictive 
ability was assessed by calculating the correlation between PPVs and observed mean phenotypic values of F2:5 
progenies in the validation population. The mean predictive ability of the models obtained in the five iterations 
was defined as the predictive ability of the first validation. This procedure was repeated nine more times, yielding 
predictive abilities for 10 validations. Finally, we calculated the mean and the respective standard deviation of the 
predictive abilities of the 10 validations.

The Tukey’s test compared the predictive abilities of models obtained using different approaches and agronomic traits 
evaluated in the F2 and F2:5 generations. Comparisons between approaches within the same trait and between traits 
within the same approach were performed when there was a significant Trait × Approach interaction (p < 0.05). When 
the interaction was not significant, comparisons were made among traits and among approaches. Prediction models 
based on multiple linear regression and machine learning approaches were compared to evaluate the importance of 
additive and non-additive genetic effects on SY prediction.

Regression analyses
Stepwise regression analysis was conducted to identify the independent variables which most strongly explained 

the dependent variable. These variables were subsequently incorporated into prediction models constructed using 
MLR, BA, and RF. Furthermore, variables that contributed to the prediction of the response variable in the multivariate 
analysis were also included. The contribution of each variable was estimated using R² values, while accounting for the 
effects of the remaining variables in the MLR model.

Computational analyses
Heritability was calculated using GENFIT (Toledo 1991). Analyses for multicollinearity, correlations, PPVs, regression 

analyses, predictive ability, and R² values of the models were conducted using GENES (Cruz 2016).
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RESULTS AND DISCUSSION

Disease progression and symptoms
The 95% confidence intervals (95%CI) for the AUDPC 

trait in the F2 population and the ‘BRQ16-5409’ and ‘BR13-
9499’ parental lines were 1261.4 ± 76.5, 1280.2 ± 69.5, and 
1345.5 ± 72.4, respectively (Figure 1). All plants exhibited 
AUDPC values above 1000 in 2019, which were higher than 
those observed in the F2:3 and F2:5 populations and parental 
lines in 2020 and 2022 with the values ranging from 737.6 
± 80.8 to 909.8 ± 69.8. The susceptible ‘BRS 523’ cultivar 
(875.5 ± 62.3) showed similar AUDPC values to the F2:5 
population in 2022, whereas the resistant ‘BRS 531’ cultivar 
exhibited significantly lower values (255.8 ± 48.2). These 
differences in AUDPC between resistant and susceptible 
genotypes, as illustrated in Figure 1S, were comparable to 
or greater than those reported in other studies involving 
soybean genotypes with and without Rpp genes (Vuong et 
al. 2016, Sacon et al. 2020).

All plants from the parental lines, the susceptible control 
‘BRS 523’ and the F2, F2:3, and F2:5 populations developed TAN-type lesions (tan-colored) with abundant sporulation 
(Figure S1d). In contrast ‘BRS 531’ developed RB-type lesions (reddish brown) characterized by limited sporulation and 
extensive necrosis. The TAN-type lesions indicate the absence of Rpp genes in the population derived from the cross 
between ‘BRQ16-5409’ and ‘BR13-9499’. The AUDPC values obtained for the F2, F2:3, and F2:5 generations confirmed that 
environmental conditions were conducive to disease development in the field (Lima et al. 2012), which provided an 
opportunity to construct prediction models for PPVs of soybean genotypes for agronomic traits under Asian soybean 
rust pressure.

Regression analyses
Models including DM and 50SW in F2 or F2:3 as explanatory variables were estimated using stepwise regression, 

yielding R² values of 46.2% and 56.06%, respectively (Table S1). However, these values were similar to those obtained 
from univariate analysis including DM (45.12% in F2 and 54.36% on F2:3). The regression coefficient values for the univariate 
analysis of DM were negative in F2 (-5.89) and F2:3 (-9.40).

When examining the contribution (R²) of each explanatory variable to the response variable prediction in the 
multivariate analysis, it can be noted that the greatest contribution of a variable in the model including the other 
variables was from DM (R² = 5.10%) in F2 and from 50SW (R² = 3.44%) in F2:3 (Table S2). However, as the other agronomic 
variables exhibited non-zero R² values (Table S2), their univariate models were also evaluated in the prediction analyses, 
in addition to the multivariate model.

Phenotypic prediction
The prediction models were obtained using the phenotypic value of SY in F2:5 as the response variable and phenotypic 

values of agronomic traits in F2 or F2:3 as predictor variables. We used the MLR, BA, and RF methods to construct univariate 
and multivariate models from the training populations. All traits evaluated in F2 or F2:3, including SY, were considered in 
the multivariate models. These models were then used to predict SY in F2:5 in the validation populations, and their R2 
values are shown in Figures 2 and 3.

No significant trait x approach interaction was observed for the coefficient of determination of the models (Table 
S3). Tukey’s test was performed to compare traits or approaches (Figures 2 and 3). Models based on MLR showed 
higher R2 values than those obtained using machine learning methods (Figures 2a and 3a). Machine learning algorithms 

Figure 1. Area under disease progress curve (AUDPC) of a soy-
bean population from the cross between ‘BRQ16-5409’ (P1) and 
‘BR13-9499’ (P2), under pressure from Asian rust. The resistant 
‘BRS 531’ cultivar (R) and the susceptible ‘BRS 523’ cultivar (S) 
were also evaluated in the F2:5 generation.
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are generally effective at capturing nonlinear patterns in predictive modeling (Parmley et al. 2019, Sousa et al. 2021, 
Silva Junior et al. 2023). These algorithms make no assumptions about the underlying model, enabling identification of 
complex genetic interactions, such as epistasis and dominance, within predictive models (Sousa et al. 2021). Thus, the 
superiority of the R² values obtained from MLR-based models indicates a limited contribution of non-additive genetic 
effects to SY prediction and suggests a predominantly linear relationship among the predictor variables and consequently 
greater importance of additive effects in the expression of SY. Ribeiro et al. (2008) also reported predominantly additive 
effects of polygenes controlling soybean yield in the presence and absence of P. pachyrhizi. When additive effects 
predominate, selecting segregating populations under severe rust pressure (Figure 1) may be an appropriate strategy 
for cultivar development.

Multicollinearity among traits can adversely affect the estimation of coefficients in a regression analysis (Del Conte et 
al. 2020). Multicollinearity occurs when the sample observations of the explanatory or predictor variables, or their linear 
combinations, are correlated. The variances associated with the estimators of regression coefficients in the presence of 
multicollinearity can reach excessively high values, making them unreliable (Bizeti et al. 2004). Furthermore, parameter 
estimates may assume absurd values or values that lack coherence with the biological phenomenon under study. In the 
present study, the CN of the correlation matrices in F2 and F2:3 populations was 63.3 and 67.7, respectively, indicating 
weak multicollinearity, according to Montgomery and Peck (1981). Thus, we did not perform ridge regression or trait 
culling to overcome collinearity problems and estimate univariate and multivariate models (Bizeti et al. 2004).

The mean R² values (46.25% in F2 and 52.12% in F2:3) for the univariate analyses of DM did not differ statistically (p < 
0.05) from those obtained in the multivariate analyses (43.39% in F2 and 55.30% in F2:3), and were higher than those of 

Figure 2. Coefficients of determination (%) of models obtained 
from different approaches (linear regression, bagging, and ran-
dom forest) (a) and agronomic traits (AT: all traits, DM: days to 
maturity, DF: days to flowering, PH: plant height, 50SW: 50-seed 
weight and SY: seed yield per plant) (b) evaluated in F2 and F2:5 
soybean populations under Asian rust pressure. The models’ 
dependent variable was SY in F2:5 and the independent variables 
were agronomic traits in F2. Models with the same lowercase 
letter do not differ by Tukey’s test at 5% probability.

Figure 3. Coefficients of determination (%) of models obtained 
different approaches (linear regression, bagging, and random 
forest) (a) and from agronomic traits (AT: all traits, DM: days to 
maturity, DF: days to flowering, PH: plant height, 50SW: 50-seed 
weight and SY: seed yield per plant) (b) evaluated in F2:3 and F2:5 
soybean populations under Asian rust pressure. The models’ 
dependent variable was SY in F2:5 and the independent variables 
were agronomic traits in F2:3. Models with the same lowercase 
letter do not differ by Tukey’s test at 5% probability.
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the other univariate models (Figures 2b and 3b). Along with DM, univariate models using DF or PH exhibited R² values 
above 35% when using phenotypic data from the F2:3 and F2:5 generations.

The narrow-sense heritabilities at the individual level in F2 were 0.59 (SY), 0.79 (DM), 0.86 (DF), 0.84 (PH), and 0.53 
(50SW). Heritabilities at the progeny mean level in F2:3 were 0.43 (SY), 0.95 (DM), 0.85 (DF), 0.93 (PH), and 0.84 (50SW). 
These heritability values can influence predictive accuracy. Traits with higher heritability specifically tended to produce 
higher R² values in the prediction models. For example, traits with heritabilities around 0.80 in F2 resulted in models 
with R² values above 35.74% (Figures 2b and 3b), whereas traits with heritabilities around 0.55 produced models with R² 
values below this threshold. Supporting this pattern, Carvalho et al. (2025) also found that traits with greater heritabilities 
showed higher R² values in genomic prediction using the population of the present study.

Breeding program
Breeding programs aiming to develop high-yielding soybean cultivars under Asian soybean rust pressure need to 

devise strategies to enhance selection accuracy in the early stages and reduce the number of lines under selection in later 
stages to increase logistical feasibility. In this regard, MRL and machine learning were performed for indirect selection, 
and models were constructed using agronomic trait phenotyping in the early stages of the breeding program (F2 or F2:3 
generation) and yield phenotyping in the later stages (F2:5).

Using phenotypic values from F2:3 to enhance early-stage selection accuracy, as opposed to F2, increased the R2 values 
of multivariate models or univariate models for DM, DF, or PH (Figures 2b and 3b). The highest R² with F2:3 data reached 
55.30%, while the maximum with F2 data was 46.25%. Replacing F2 phenotypic values with the mean of F2:3 progenies 
enabled improved model fit. However, although F2:3 offers greater accuracy and potential genetic gains, breeders must 
weigh this against the increased mechanical and financial costs required to advance this generation. Therefore, the 
decision to select in F2:3 should consider both the improved prediction accuracy and the resource demands associated 
with evaluating progeny rows.

As prediction models showed R² values near 50%, evaluating six plants per F2:3 progeny was adequate, as supported 
by previous inheritance studies (Ribeiro et al. 2008, Lima et al. 2012). The F2, F2:3, and F2:5 generations were evaluated in 
the field, while F2:4 was assessed in a greenhouse. However, if agronomic traits are measured in F2, F2:3 can be conducted 
in a greenhouse, and vice versa. Additionally, lines can be evaluated in F2:4 instead of F2:5, shortening the breeding cycle 
by one year.

Phenotypic prediction enables reducing the number of lines in later selection stages, improving logistical feasibility. 
For instance, selecting 2% of 10,000 F2 plants yields 200 plants. If each produces 50 F2:5 lines, 10,000 lines are generated. 
Without prior modeling in the training/validation population, all 10,000 F2 plants would result in 500,000 field lines. This 
volume hinders maintaining optimal conditions for pathogen development (Bock et al. 2022). Reducing the number of 
lines helps preserve environmental suitability, enhancing the effectiveness of selecting productive lines under disease 
pressure in advanced breeding stages.

Managing ASR in Brazil involves a soybean-free period, during which planting is prohibited in certain areas to reduce 
inoculum pressure for the next season (Godoy et al. 2016). Additionally, growing early-maturing cultivars is another 
strategy, as these cultivars spend less time in the field and can escape late-season infections or reduce disease severity 
(Zambolim et al. 2022). In this study, DM in F2 and F2:3 was negatively correlated with SY in F2:5 (-0.67 and -0.74, respectively) 
(Table S4). Furthermore, univariate models using DM as a predictor had the highest R² values (Figures 2b and 3b), with 
negative regression coefficients, suggesting that early maturity in early generations contributed to selecting the most 
productive F2:5 progenies. However, unlike typical early sowing conditions in Brazil, the inoculum pressure in our study 
differed. While soybeans in Londrina are usually sown from September to December, the trials reported herein were 
planted in November and subsequently inoculated with P. pachyrhizi to create high rust pressure, resulting in elevated 
ASRS and AUDPC values for all plants (Figure 1). Despite these late-sowing and high ASR pressure conditions, Carvalho et 
al. (2025) reported that earlier plants experienced shorter exposure to rust, and this may reduce physiological damage. 
However, in this study, positive correlations between grain yield and days to maturity were observed in the F2 and F2:3 
generations (Table S5).
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The accuracy of predictive models in soybean for grain yield has varied according to the objectives of the breeding 
program or selection methods (Yoosefzadeh-Najafabadi et al. 2021, Pérez et al. 2024). For example, the genomic prediction 
of F2:5 progenies conducted by Carvalho et al. (2025) based on the population under study generated models with an 
R² of up to 36.00% (predictive ability = 0.60). On the other hand, the coefficients obtained from phenotypic prediction, 
as shown in Figures 2 and 3, reached 55.30%. In addition to the difference in accuracy of the predictive models, the 
cost of genotyping F2 plants can be unfeasible for breeding programs in public institutions, depending on the number 
of plants genotyped (Wartha and Lorenz 2021). In contrast, evaluating DM, DF, or HP (for example) is a routine activity 
in these programs.

In addition to DM, the DF and HP traits in F2 (-0.59 and -0.63, respectively) and F2:3 (-0.81 and -0.72, respectively) 
showed negative correlations with SY in F2:5. These correlations are consistent with the negative regression coefficients 
in the univariate models for these traits. Moreover, the development of early, shorter, and high-yielding cultivars is not 
only important for improved rust control, but also for better adaptation to the Brazilian production system.

The possibility of selecting agronomic traits such as DM, DF, or PH in the early breeding stages enables reducing the 
segregating lines, enhances the ability to maintain favorable climatic conditions for optimal pathogen development, 
and minimizes the need for a larger logistical structure to manage and harvest the lines.

CONCLUSION

Phenotyping of agronomic traits in the early stages of a breeding program can enable selecting seed yield in later 
stages of a soybean population under Asian soybean rust pressure. This strategy contributes to cost reduction, facilitates 
maintaining favorable climatic conditions for optimal pathogen development, allows for early-generation selection, 
reduces the need for extensive physical infrastructure and labor for harvesting and other cultural practices, and increases 
genetic gains.
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