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Abstract: Genotype × environment (G×E) interaction is a primary challenge in 
plant breeding. This study integrates envirotyping with genetic modeling to 
dissect G×E for maize yield using the Genomes to Fields dataset. We utilized 
PaCMAP dimensionality reduction to classify 272 environments into four target 
populations of environments, which segregated into two mega-environments 
(Southern and Northern U.S.). A strong crossover interaction was detected 
between these mega-environments, resulting in low performance stability 
(quantified by the S index), primarily driven by an inverse relationship between 
growing degree days and silking, as well as yield: longer-cycle hybrids were 
advantageous in the South, while shorter-cycle hybrids excelled in the North. 
Our findings provide quantitative evidence that this phenological response, 
linked to photoperiod sensitivity, is a key mechanism underlying the G×E inter-
action. This framework offers a robust tool for defining breeding targets and 
accelerating genetic gain.
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INTRODUCTION

Genotype × environment (G×E) interaction is a primary challenge in quantitative 
genetics and plant breeding, occurring when different genotypes respond distinctly 
to environmental variations (Falconer and Mackay 1996, Pereira et al. 2025). This 
interaction can manifest in two forms: simple, when it arises from differences in 
the magnitude of genetic variances across environments, and crossover, when the 
genetic covariances between pairs of environments are low or negative, resulting 
in changes in the ranking of genotypes (Cooper and DeLacy 1994).

These changes in ranking stem from specific interactions between genotypes 
and environmental conditions during plant development, such that climatic, 
edaphic, and management features can be incorporated into the modeling of 
these interactions (Jarquín et al. 2014, Resende et al. 2021, Costa-Neto et al. 
2021a, Cooper et al. 2022, Araújo et al. 2024). As crossover interaction represents 
one of the most significant challenges within a breeding program, developing 
methodologies capable of modeling and exploiting G×E is of paramount 
importance to maximize genetic gains and identify germplasm adapted to 
different environmental conditions.
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An advance in the understanding of G×E was introduced by Cooper and DeLacy (1994), who proposed decomposing 
the interaction variance into components associated with changes in scale (non-crossover) and changes in the ranking of 
genotypes (crossover). The dissemination of linear mixed models (LMMs) in plant breeding represented a methodological 
improvement, enabling the modeling of variance and covariance structures between pairs of environments, such as 
compound symmetry, unstructured model, and Factor Analytic (FA) (Smith et al. 2001, 2005). The last-mentioned 
method gained popularity due to its ability to estimate the variance-covariance matrix with fewer parameters than 
an unstructured model. In this approach, genetic effects are captured by linear combinations of a reduced number of 
latent factors, which in turn capture the principal patterns of genotypic response (Crossa et al. 2004, Smith et al. 2005). 
However, mixed models describe the existence of G×E patterns, but do not explain why they occur. This limitation is 
overcome through the integration of envirotyping, which involves the systematic characterization of environmental 
variation and its incorporation into genetic-statistical models (Jarquín et al. 2014, Araújo et al. 2024).

This process involves quantifying environmental covariates (ECs), such as temperature, precipitation, ecophysiological 
features, and soil texture. ECs can be used for various purposes, such as defining Target Populations of Environments 
(TPEs), aiding in genomic prediction for untested locations, and interpreting the latent factors of FA analyses (Costa-Neto 
et al. 2021a, Araújo et al. 2025, Cruz et al. 2025). The combination of multi-environment trials (METs), factor analytic 
modeling, and envirotyping establishes a practical toolkit that allows for the understanding of G×E patterns and the 
identification of genotypes with broad or specific adaptation, enabling the optimization of resource allocation, such as the 
selection of representative test locations, and increasing selection accuracy through the exploitation of the interaction.

This study leverages the extensive Genomes to Fields (G2F) dataset to implement an integrated framework for 
dissecting G×E interactions in maize. The primary objective is to utilize high-resolution envirotyping, integrating detailed 
climatic data across phenological windows, to classify trial locations into data-driven TPEs. We employ a combination 
of nonlinear dimensionality reduction and clustering algorithms to achieve this classification. The primary objective of 
this research is to determine whether those TPEs effectively partition the crossover component of G×E for grain yield, 
as quantified through FA mixed models. Beyond partitioning the interaction, a further objective is to elucidate the 
biological drivers of the observed G×E patterns. We hypothesize that differential responses in phenology, specifically 
the relationship between Growing Degree Days (GDD) to silking and grain yield, are a key feature of hybrid adaptation 
within and across the identified TPEs.

MATERIAL AND METHODS

Phenotypic data and adjusted genotypic values
The phenotypic data originate from the G2F Initiative, a large-scale, public-private collaborative consortium that 

provides results from a network of METs in the United States. This work utilized the phenotypic dataset containing 
records for grain yield (Mg ha⁻¹) at the plot level and days to silking, which was transformed into GDD to silking. The data 
were collected in field trials conducted between 2014 and 2023 and comprise a total of 272 environments (location-
year combinations) and 341 trials (Genomes to Fields 2025). Each trial was analyzed individually for yield and degree 
days to silking using linear mixed models (LMMs) with ASReml-R (Butler et al. 2023). To accommodate the diversity of 
experimental designs, the model structure was dynamically adjusted:

For trials with a randomized complete block design (RCBD), the fitted model was:

Yij = μ + Gi + Rj + ϵij

where Yij is the observed phenotype, μ is the overall mean, Gi is the fixed effect of the ith hybrid, Rj is the fixed effect of 
the jth replication, and ϵij is the random residual error, assumed as ϵij ~ N(0, σ2

e). 

For trials with an incomplete block design, the model was expanded to:

Yijk = μ + Gi + Rj + Bk(j) + ϵijk 

where Bk(j) represents the fixed effect of the kth block nested within the jth replication, allowing for finer control of local 
spatial variation. For incomplete blocks with convergence issues or non-estimable empirical Best Linear Unbiased Estimates 
(eBLUEs) due to severe imbalance, a fallback strategy was employed, consisting of fitting a complete block model.
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For each trial, from an analogous model where the hybrid effect was considered random (Gi ~ N(0, σ2
g), the broad-

sense heritability was estimated: (H2):

H2 = σ2
g

σ2
g + (σ2

ϵ  /rh)
  

where σ2
g is the genotypic variance,σ2

ϵ  is the residual variance, and rh is the harmonic mean of the number of replications 
of the hybrids. The experimental coefficient of variation (CVe) was also calculated from σ2

ϵ  and the grain yield mean Y ̅. 

CVe = σ2
ϵ

Y̅
 

When the same environment included more than one trial, a joint analysis was performed, considering the fixed 
effect of the experiment and its nested structures (replications and blocks), to capture systematic variations between 
experiments conducted in the exact location and year.

Environmental characterization
Creating a climatic profile for each environment required defining a unique and representative temporal window 

that encompassed the crop growth cycle. In the dataset, 86 environments contained two or more trials, which required 
an evaluation of the variability in management dates. The mean planting interval between experiments within the 
same environment was only one day, with 75% of the environments showing no difference. For harvesting, consistency 
was maintained, with a mean interval of 2.4 days and 75% of the environments exhibiting a difference of less than 2 
days. Due to the consistency of dates, the mean planting date and mean harvest date were calculated for each of the 
86 environments with more than one experiment. That measure defines the start and end points for extracting daily 
meteorological data from the NASA POWER database. The EnvRtype package was used to calculate agrometeorological 
features, and a total of 33 environmental features were accessed (Costa-Neto et al. 2021b).

The crop growth cycle was partitioned into two macrophases, vegetative and reproductive, delimited by days to silking 
and normalized by GDD. The vegetative phase windows were defined as fractions of the total GDD accumulated from 
planting to silking, resulting in the following segmentation: W1 (from planting to 40% of the GDD to silking), W2 (from 
40% to 90%), and W3 (from 90% to 100%). Subsequently, the reproductive phase windows were defined as fractions of 
the total GDD accumulated between silking and harvest, as follows: W4 (from silking to 10% of the reproductive GDD), 
W5 (from 10% to 30%), W6 (from 30% to 65%), and W7 (from 65% to the end of the growth cycle). The features were 
then summarized by the mean within each window, resulting in a matrix of environmental covariates.

The matrix of environmental covariates was subjected to the nonlinear dimensionality reduction technique PaCMAP 
(Pairwise Controlled Manifold Approximation) with n_neighbors = 6, MN_ratio = 0.5, and FP_ratio = 4, as developed by 
Wang et al. (2021), to describe the interrelationships among the environments. Each environment was represented as 
a point in a three-dimensional space defined by the PaCMAP components derived from the climatic variables across 
phenological windows. The k-means clustering algorithm was then applied to the PaCMAP components to test K clusters, 
where each cluster represents a TPE; the number of TPEs was defined by the Caliński and Harabasz (1974) methodology.

Validation of the TPEs
To validate whether the TPEs are capable of capturing crossover G×E interaction for grain yield, the data were filtered 

to include only hybrids present in at least 20 environments and with an occurrence in a minimum of five environments 
within each TPE, resulting in a dataset of 92 hybrids evaluated in 168 environments. For GDD to silking, only environments 
with grain yield data were considered, and the analysis was restricted to hybrids present in at least four environments 
in each TPE, totaling 86 hybrids in common with the dataset used for yield, evaluated in 130 environments.

These data were subjected to an FA model with different numbers of latent factors (K=2 up to 5 for yield, 1 up to 2 
for GDD to silking):

Yij = μ + ej + (Ge)ij + ϵij 

where Yij is the eBLUE of the ith hybrid in the jth environment, obtained from the first-stage; µ is the overall mean; ej 
represents the random effect of the jth environment, assuming the distribution ej ~ N(0, σ2

e); (Ge)ij corresponds to the 
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random effect of the interaction between the ith hybrid and the jth environment, assuming (Ge)ij ~ N(0, σ2
ge); and ϵij is the 

residual error, weighted by wij = 1/[σ2(eBLUEij)].

The G×E interaction was decomposed by means of a factor analytic structure:

(Ge)ij = 
K

Σ
k=1

  λjk fik + δij 

where λjk represents the factor loading of the jth environment on the kth latent factor, fik is the factor score of the ith hybrid, 
and δij is the environment-specific term not explained by the factors.

The optimal number of factors was determined based on the total variance explained by the factorial structure, 
adopting a threshold of 80% as the criterion (Smith and Cullis 2018). After fitting, the factor loadings (Λ) were subjected 
to orthogonal rotation via singular value decomposition (SVD). The genetic covariance matrix between environments 
(ΣG) was reconstructed using the equation:

ΣG = ΛΛ' + Ψ,

where Ψ is the diagonal matrix of environment-specific variances not explained by the factors. From ΣG the genetic 
correlation matrix was derived, which was then explored to infer the degree of genetic consistency between environments 
belonging to the same TPE.

Stability across TPEs
Hybrid stability across TPEs was estimated based on the consistency of the mean performance rankings of the hybrid 

in each environmental group. For each hybrid, the ranking within each TPE was calculated based on the mean of the 
Empirical Best Linear Unbiased Predictor (eBLUPs). Subsequently, the stability index S was defined, which quantifies the 
relative change in rank of each hybrid across TPEs.

The Si metric was calculated as:

Si = 1 ‒ |R̅ij ‒ R̅i|
N

 

where Rij is the rank of hybrid i in TPE j, R̅i is the mean rank of the genotype across TPEs, |R̅ij ‒ R̅i| is the mean absolute 
deviation of the ranks, and N is the total number of hybrids. S values close to 1 indicate greater stability (lower rank 
variation across TPEs), while lower values reflect greater instability. The relationship between responsiveness (mean of 
the G×E interaction effects) and stability (Si) was explored through a bivariate plot, allowing the identification of hybrids 
with simultaneously high and predictable performance across TPEs.

Relationship between GDD to silking and yield
The predicted values of yield and GDD to silking, obtained from the fitted FA models, were used to describe the 

relationship between both traits within each TPE. Only environments that contained observations for both traits were 
considered, ensuring direct correspondence between the datasets. For each TPE, a first-degree locally weighted regression 
(LOESS) was applied between the predicted values of yield and GDD to silking, in order to capture the functional structure 
and potential nonlinear patterns of the association between the traits within each environmental context.

RESULTS AND DISCUSSION

Characterization of the Target Populations of Environments (TPEs)
Following the dimensionality reduction of the climatic dataset via PaCMAP, the Caliński and Harabasz (1974) index 

was calculated, which reached its maximum value at k = 4, indicating that this is the optimal number of TPEs, offering 
the best balance between within-cluster cohesion and between-cluster separation. The visualization of the four TPEs 
is presented in Figure 1. The 3D scatter plot, generated by the PaCMAP technique, represents each environment as a 
point in space, where the proximity between points reflects the similarity of their climatic profiles. Coloring by the four 
TPEs defined by the k-means algorithm reveals a spatial separation of the groups. The geographical distribution of the 
TPEs, overlaid on a map of the United States’ Agroecological Zones, is presented in Figure 1. The analysis reveals distinct 



Integrating envirotyping and genetic modeling to dissect crossover G×E interaction and stability in maize

5Crop Breeding and Applied Biotechnology - 26(1): e54682613, 2026

spatial patterns that align with the major agricultural regions and climatic gradients, indicating that the TPEs represent 
mega-environments with specific management and yield characteristics.

TPEs 1 and 2 are consistently located in the southern portion of the country. These environments are characterized 
by the lowest mean yields (8.38 and 8.22 Mg ha⁻¹, respectively). This lower performance is associated with an earlier 
planting window, which extends from March to May. Specifically, TPE 1 concentrates the plantings in April (56% of 
environments), whereas TPE 2 has a more balanced distribution between April (34%) and May (44%).

In contrast, TPEs 3 and 4 are more concentrated in the central and northern regions, encompassing a large part of the 
Corn Belt area. Those TPEs represent the environments with the highest production potential and mean yields (10.40 and 
10.04 Mg ha⁻¹, respectively). Management in those locations is characterized by later and more concentrated plantings. 
Approximately 80% of the environments in TPE 3 and 68% in TPE 4 have planting conducted in May, with some extending 
into June. This later planting window is a strategy to avoid spring frosts and capitalize on the ideal summer temperature 
and solar radiation conditions in the northern and midwestern United States, thereby maximizing yield potential.

The TPEs show sensitivity in capturing not only geographical differences but also interannual climatic variability and 
the impact of planting dates within a specific location. This capability is clear in Wisconsin (WIH), where 23 environments 
were distributed between TPE 3 and TPE 4. Despite the general predominance of TPE 4 in this location, all environments 
conducted in 2023 were classified as TPE 3, evidencing the capture of a strong year effect. Within the same year, as in 
2021, the management effect was also distinct. Of the three environments evaluated, the trial with planting in April 
was classified as TPE 4, whereas the other two, with planting in May, were grouped into TPE 3, isolating the impact of 
the planting date on the environmental profile.

Similar patterns of annual variation are observed in several other locations. In Texas (TXH), the TPEs captured the 
distinction between the years 2021 and 2023, where both years had three environments, but each year was grouped 

Figure 1. Map of the Agroecological Zones of the United States (FAO 2025), showing the trial locations. The pie charts at each location 
indicate the proportion of environments classified into each of the four TPEs, revealing distinct geographical distribution patterns. 
N is the number of environments. Adjacent is a 3D scatter plot generated from the nonlinear components of PaCMAP, where each 
point represents one environment.
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into different TPEs (1 and 2). In this location, it was also possible to isolate the effect of planting date; in 2017, an 
environment with late planting in May was classified as TPE 1, while three other environments with earlier plantings in 
March and April were characterized as TPE 2.

 These examples demonstrate the capability of envirotyping to differentiate the effects of location, year, and the 
interaction between year and management (planting date), consolidating these sources of variation into distinct 
clusters. This is a direct result of characterizing environments at the resolution of individual trials rather than as static 
geographical locations. By enabling the disentanglement of these complex spatio-temporal effects, the resulting clear 
separation between northern and southern mega-environments not only validates this high-resolution classification 
but also corroborates the broad spatial patterns identified by Lopez-Cruz et al. (2023).

Genetic correlations
The analysis of the G×E interaction for grain yield was performed on the filtered dataset, comprising 92 hybrids 

evaluated in 168 environments. The decomposition of the G×E interaction revealed that a model with two latent factors 
(FA2) was sufficient to capture the underlying structure of the yield patterns and interactions. This model explained 
83.39% of the total variance.

The mean genetic correlation matrix between and within the TPEs, derived from the FA2 model, is presented in Figure 
5. The genetic correlations within each TPE, represented on the diagonal of the matrix, revealed moderate to high values, 
ranging from 0.60 (TPE 2) to 0.75 (TPE 4). These coefficients indicate a high level of consistency in the ranking of the 
hybrids within each group, validating the effectiveness of the clustering in forming environmentally homogeneous groups.

The analysis of the hierarchical structure of the correlations, visualized by the dendrogram, revealed a clear segregation 
of the TPEs into two distinct mega-environments. The first was composed of TPEs 1 and 2, which exhibited a strong 
genetic association with each other (0.63). The second mega-environment, comprising TPEs 3 and 4, also showed a high 
internal correlation (0.66) (Figure 5).

Figure 2. Yield ranking of the hybrids across the TPEs. Colors range from green (best-ranked) to red (worst-ranked), and the dendro-
gram on the Y-axis groups the hybrids based on the similarity of their response patterns.
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The primary source of crossover G×E interaction was evidenced by the low genetic correlation between these two 
mega-environments. The most pronounced contrast was observed between TPE 4 and TPEs 1 and 2, where the correlation 
coefficients were reduced to 0.34 and 0.43, respectively (Figure 5). Values of this magnitude indicate a substantial change 
in the ranking of the hybrids, implying that the selection of hybrids based on performance in one mega-environment 
would be ineffective for predicting their behavior in the other.

The visualization of the crossover G×E interaction is presented in the heatmap of Figure 2, which displays the ranking 
of the 92 hybrids in each of the four TPEs. The hierarchical analysis of the hybrids (Y-axis) revealed the formation of 
distinct groups with specific adaptation patterns, confirming the mega-environment structure identified by the correlation 
matrix. A group of hybrids, located in the upper portion of the heatmap, showed superior performance in TPEs 3 and 4, 
which correspond to the high-potential environments of the Corn Belt; these same hybrids showed consistently lower 
performance in TPEs 1 and 2. It is also possible to identify hybrids with the opposite adaptation pattern, showing better 
adaptation to the southern environments than to the northern ones. Three of these stand-out hybrids originate from 
the Texas inbred line TX777. Additionally, some hybrids with high stability are observed, consistently ranking among 
the best or worst in all TPEs.

Stability and silking
For an integrated analysis of the performance and stability of the hybrids, a scatter plot was generated relating mean 

responsiveness (eBLUP) to ranking stability (S index) across the TPEs; S is based on the nonparametric methodology of 
Huehn (1990). This approach enables the classification of hybrids into four quadrants with distinct adaptation profiles 
(Figure 3). The upper-right quadrant of the plot identifies the most desirable hybrids, which combine high responsiveness 
(eBLUP > 0) and high stability (S > 0.92) (Figure 3). A significant number of hybrids are located in this region, characterizing 
them as materials with high performance and broad adaptability, consistently exhibiting superior performance in the 
majority of TPEs. In contrast, the lower-right quadrant groups hybrids with high responsiveness but low stability. Hybrids 
such as PHW52/LH185 and LH195/PHR55 belong to this group, indicating that, although their mean performance is 

Figure 3. Scatter plot of Mean Responsiveness (eBLUP) versus Ranking Stability index (S). The upper-right quadrant contains the most 
desirable hybrids, characterized by high performance and stability across all TPEs.
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high, their ranking can vary significantly across the TPEs. Other hybrids with mean performance near the population 
average, such as TX777/LH195 and LH198, have lower stability but can still excel under specific conditions; in the case 
of these two hybrids, they excel in TPEs 1 and 2.

The modeling of silking revealed a simpler interaction pattern, with a single factor explaining 91.25% of the interaction, 
indicating a predominance of simple interactions, as previously evidenced by He et al. (2025) with data from the Genomes 
to Fields initiative. The analysis of the relationship between grain yield and GDD to silking reveals that phenology is a 
determining factor for the adaptation and stability of the hybrids, being one of the factors that impact the crossover 
G×E and the stability observed between the North and South mega-environments (Figure 4). In the environments of 
the southern region (TPE 1 and TPE 2), which have a mean thermal accumulation to silking of 796 GDD and 776 GDD, 
respectively, the yield response curve demonstrates an advantage for longer-cycle hybrids, where maximum yield is 
achieved by hybrids that silk with a GDD near 800 and remains relatively stable up to 900 GDD, particularly in TPE 1. In 
contrast, shorter-cycle (early) hybrids are consistently penalized with lower yield.

Although TPEs 3 and 4 exhibit a mean GDD to silking within a similar range (792 GDD and 733 GDD, respectively), 
they show an opposite pattern. In these higher-yielding environments, the response curve favors shorter-cycle hybrids, 
with peak yield occurring within a GDD window of 775-825 in TPE 3 and 720-770 GDD in TPE 4, which predominantly 
comprises the northernmost environments. Hybrids that exceed these thresholds, particularly in TPE 4, experience a 
sharp decline in yield.

Hybrids with an intermediate cycle to silking are those that exhibit the highest stability and are the most numerous, 
suggesting a form of stabilizing selection, as these are the hybrids that have been extensively tested across the most 
diverse environments of the entire dataset. This observed difference between hybrids adapted to the North and the 
South is explained by Drouault et al. (2025), who demonstrated the division in the response of temperate and tropical 

Figure 4. Predicted grain yield as a function of GDD to silking across the four TPEs. Each point is a hybrid colored by its yield stability 
(S) (yellow = high, purple = low). Dashed lines indicate LOESS regression trends
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maize. The physiological mechanism underlying this division is photoperiod sensitivity, which acts as a flowering delay 
signal and is activated by long days. Temperate germplasm, corresponding to the hybrids with superior performance 
in the North, achieves its earliness by having been selected for low sensitivity, thereby ignoring the inhibitory signal of 
long days. In contrast, tropical germplasm, as well as the hybrids adapted to the South, maintains high sensitivity, and 
its silking is delayed under long days (Drouault et al. 2025).

CONCLUSIONS

This study demonstrates the efficacy of an integrated enviromics framework for dissecting complex G×E patterns in 
maize. The application of the nonlinear dimensionality reduction technique PaCMAP proved highly efficient in condensing 
high-dimensional climatic data into a meaningful, low-dimensional representation of the environmental space. This 
enables achieving the goal of classifying environments into four distinct TPEs, which were subsequently validated by their 
ability to effectively partition the crossover component of G×E for grain yield. The success of this data-driven approach 
underscores the value of incorporating detailed environmental characterization into genetic analyses, moving beyond 
simply describing G×E patterns to elucidating their underlying environmental drivers.

The segregation of environments into two distinct mega-environments provided strong quantitative evidence that 
phenological adaptation is a primary determinant of yield performance and stability. This differential adaptation was 
explicitly captured by the stability index, which quantified the instability arising from the strong crossover interaction. 
Hybrids with an intermediate flowering cycle showed the highest stability across all TPEs, whereas those adapted to 
the phenological extremes of either mega-environment were inherently unstable when evaluated across the entire 
environmental network. This finding directly links the physiological trade-off of photoperiod sensitivity to a quantifiable 
measure of performance stability, underscoring the critical importance of phenology as a target trait for breeding. 
Consequently, the framework provides a powerful tool for developing more targeted selection strategies, enabling the 
precise deployment of hybrids based on their predicted phenological response to specific mega-environments, thereby 
optimizing resource allocation and accelerating genetic gain.

Figure 5. Genetic correlation matrix from the FA2 model for grain yield among the TPEs. The diagonal of the matrix shows the genetic 
correlations within each TPE. The off-diagonal values represent the genetic correlations between TPEs.
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