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Abstract: Selecting grapevine rootstocks that are tolerant to drought has become 
crucial for the sustainability of viticulture. This study evaluated the quantitative 
and molecular genetic variability of eight rootstocks subjected to progressive 
water depletion while cultured in a greenhouse. Several plant mass traits were 
analyzed, and six SSR markers were used to assess molecular diversity. While 
heritability for leaf traits varied, stem diameter exhibited a distinct pattern where 
genotypic differentiation and heritability estimates increased significantly under 
severe water deficit, ensuring reliable selection accuracy. Additionally, our BLUP 
analysis indicated that clones IAC 313 Tropical, IAC 766 Campinas, and Paulsen 
1103 performed best by the end of the stress period. The SSR analysis grouped 
the genotypes together while revealing a high genetic diversity among all the 
rootstocks (He > 0.70). We concluded that late-stage stem diameter was a reli-
able but indirect selection criterion for drought tolerance.
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INTRODUCTION

Viticulture is one of the most significant agricultural activities worldwide 
(Zhang et al. 2009, OIV 2024). The use of rootstocks in viticulture has been 
fundamental since the 19th century, mainly due to phylloxera infestations in 
Vitis vinifera L. cultivars. Therefore, a range of rootstocks were developed by 
crossing different Vitis species, especially American strains resistant to this pest 
(Blank et al. 2022, Chen et al. 2024). In addition to conferring resistance to pests 
and diseases, the use and breeding of rootstocks have played a crucial role in 
overcoming various abiotic stresses, such as water deficits and excessive soil 
salinity, as well as influencing the quality of the grapes and consequently the 
wine produced (Prinsi et al. 2021, Blank et al. 2022, Rius-Garcia et al. 2025). 
Genotypes such as ‘Paulsen 1103’ and ‘Ruggeri 140’ stand out for their root 
system adaptations, conferring a greater tolerance to water scarcity (Ferlito et 
al. 2020). Traveling south, in tropical viticulture, rootstocks from the ‘IAC’ series, 
such as IAC 572 ‘Jales’ and IAC 766 ‘Campinas’, have also shown remarkable 
adaptation to abiotic stresses. Studies have evidenced their tolerance to salinity 
and salt-induced water stress, where they maintain photosynthetic activity 
and growth even under high osmotic pressure (Viana et al. 2001, Silva et al. 
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2024). The search for alternatives that promote crop resilience is intensifying due to the current climate change causing 
worsening droughts. In this context, the development and use of rootstocks tolerant to water deficits is emerging as 
a fundamental strategy (Delrot et al. 2020). In addition, these rootstocks also increase general industry sustainability 
by reducing the water required by the vines, lessening the dependence on irrigation, and favoring the rational use of 
water resources (Medrano et al. 2018).

The proper choice of rootstocks represents one of the main challenges in viticulture, as different genotypes have 
distinct capacities for adaptation to environmental conditions, especially under water scarcity. Given the increasing 
importance of drought tolerance for the sustainability of viticultural production, the present research aimed to evaluate 
eight rootstock genotypes, with the goal of selecting drought-tolerant materials.

MATERIAL AND METHODS

Experiment and plant material
The experiment was conducted at the Department of Plant Protection (lat 22° 50’ 48” S, long 48° 26’ 06” W and 

alt 817 m asl) within the São Paulo State University, College of Agriculture (FCA/Unesp). The eight grapevine rootstock 
cultivars evaluated (Table 1) were selected based on their field history (unpublished data, IAC) and observations made 
under water depletion. The rootstock cuttings were obtained from the Advanced Division of Research and Development 
of Fruits of the Agronomic Institute (IAC).

The cuttings used for planting were approximately 30 cm long, with 4 buds. A basal cut was made near a bud, and an 
apical, beveled cut was made 1 cm above the last bud on the cutting. The cuttings were rooted in 1.7-liter plastic pots 
containing Carolina Soil® substrate, irrigated by micro-sprinklers, and fertilized to develop the root system. The cuttings 
were planted on August 10, 2023, and remained in the rooting beds until October 11, 2023. Two shoots were maintained, 
one at the base of the cutting and one at its apex (shoots 1 and 2, respectively), while developing the rootstock. The 
experiment began when rootstock shoots 1 and 2 had average lengths of 33 and 41 cm and 9 and 11 leaves, respectively.

Characterization of the experiment and water depletion imposition
The plastic pots with the rootstock cultivars were placed in the greenhouse between November and December 2024, 

on foam blocks housed in six 50-liter Arqplast brand plastic boxes (organizer type), 57 cm in length, 41 cm in width, and 
35 cm in height. Faucets were installed 5 cm from the base of each box to adjust the water level, along with phenolic 
foam blocks (Aquaflora®) measuring 41 cm in length, 30 cm in width, and 23 cm in height. The cuttings remained in 
these plastic boxes from October 11 to December 10, 2023, at internal temperatures ranging from 18 to 30 °C and 
relative air humidity from 74 to 86%. 6 cm circular openings at the base of the plastic pots contained a nylon mesh that 
allowed contact between the seedlings’ root system and the foam blocks to allow water absorption through capillarity, 
as according to the methodology proposed by Marchin et al. (2020).

The eight genotypes were used in a randomized complete block experimental design, totaling 6 blocks (boxes) with 
one plant per plot. To simulate stress conditions resulting from water scarcity, the water available was gradually reduced. 
Initially, the plants were subjected to a 21 cm water level for a period of 10 days to acclimatize the plants (no stress). 
After this period, the water level was reduced to 12 cm (minimum stress) for 15 days before the water level was further 

Table 1. The eight grapevine rootstocks used and their parentals. Agronomic Institute (IAC), SP, Brazil

Genotype Cross Origin 
IAC 766 Campinas 106-8 Mgt (V. riparia x (V. cordifolia x V. rupestris)) x V. caribeae IAC
IAC 572 Jales V. caribeae x 101-14 (V. riparia x V. rupestris) IAC
IAC 313 Tropical Golia (V. riparia-Carignane x V. rupestris du Lot) x V. cinérea IAC
IAC 571-6 Jundiaí Pirovano 57 (Bianca X Poeta Matabon) x V. caribea IAC
Paulsen 1103 V. berlandieri resseguier 2 x V. rupestris du lot Italy
5 C V. berlandieri resseguier 2 x V.riparia gloire de montpellier USA
110 R V. rupestris x V. berlandieri Germany
101-14 V. riparia x V. rupestris EMBRAPA
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reduced to 4 cm for 20 days (high water stress) and finally returned to 21 cm to observe the post-stress recovery of the 
genotypes, totaling seven measurements.

Evaluated traits and genetic correlation analysis
During the experiment, two shoots were maintained on each rootstock, while any further shoots were removed 

frequently. Thus, at the end of the experiment, 68 days after transplanting the rootstocks into the foam blocks, the leaf 
and stem length from the two shoots was evaluated, named 1 and 2 for the median and apex locations, respectively.

Estimation of the variation components and genetic parameters
The following mixed model was used to capture the genetic variances between the clones (σ2

g), residues (σ2
e​), and 

phenotypes

(σ2
f): Yijk = Xβ + ε 

Where Yijk is the i-th individual of the j-th clone within the k-th block, X is the incidence matrix for the random 
effects, β is the vector of random effects for the j-th genotype, and ε is the experimental error. The genetic parameters 
were then estimated for each measured trait with the estimated variance components. Additionally, the average broad 

sense heritability (H2 = 
σ2

g

σ2
f
 ) and the accuracy (acc = H 2 ) among the genotypes were estimated, where σ2

g  is the genetic 
variance among the genotypes, and σ2

f is the phenotypic variance.

Molecular analysis
The DNA extraction was performed according to the protocol of Doyle and Doyle (1987), and its quality and concentration 

were evaluated by agarose gel electrophoresis and spectrophotometry using a NanoDrop. Ten microsatellite loci developed 
by Merdinoglu et al. (2005) were tested; of these, three could not be amplified (VVIq52, VVIv37, and VMC1b11) using 
an M13-tailed PCR. The products of the remaining seven loci were amplified and submitted to genotyping using an ABI 
3500 Genetic Analyzer sequencer and analyzed using the GeneMapper 5.0 software.

The data was imported and formatted as a genind object using the “adegenet” package (Jombart 2008) in R 4.3.3 
(R Core Team 2024). Genetic diversity parameters, such as the observed heterozygosity (Ho​), expected heterozygosity 
(He​), and fixation index (F), were calculated from this genind object’s summary. A Hardy-Weinberg equilibrium test was 
conducted using the “pegas” package in R (Paradis 2010), with 10,000 bootstrap replicates to increase its statistical 
robustness.

Genetic distance between genotypes
To evaluate the genetic dissimilarity among the tested rootstock cultivars, genetic distances were calculated using 

the prevosti.dist function in the “poppr” package (Kamvar 2014). Hierarchical clustering was then performed using the 
“average” method (UPGMA) with this dissimilarity matrix. The resulting dendrogram was visualized and plotted using 
the “dendextend” package in R (Galili 2015).

RESULTS AND DISCUSSION

Genetic parameters
There was substantial variation within the vegetative components and leaf traits (Leaf_1 and Leaf_2) of the eight 

grapevine genotypes used as rootstocks (Table 2). Therefore, there is plenty of exploitable genetic variability for breeding 
purposes using these genetic, phenotypic, and residual variances. In general, the phenotypic variance (σ2

p) exceeded 
the genetic variance (σ2

g) for all evaluated traits, highlighting considerable environmental influence. Nevertheless, the 
magnitude of σ2

g was relatively high for several components, particularly for Sprout_2, suggesting a greater potential 
for direct selection. The mean values (μ) of Sprout_2 ranged from 68.02 to 78.20, while Leaf_1 and Leaf_2 presented 
lower averages, ranging from 10.39 to 12.48. This contrast indicates that sprout length is not only more expressive but 
also more variable, reinforcing its relevance as an indicator of vegetative vigor.
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Heritability (H²) estimates varied widely among traits and genotypes. For Sprout_2, H² values ranged from 0.30 to 
0.56, characterizing a moderate to high H² and suggesting a greater selection efficiency. In contrast, Leaf_1 and Leaf_2 
generally exhibited a low to moderate H², indicating more environmental influence on leaf length. For stem diameter 
(SD), the H² variation was high, ranging from 0.07 to 0.90 between SD_1 and SD_2. Additionally, a distinct behavior for 
SD was noted: as the water depletion intensified, genotypic differentiation increased, resulting in higher H² estimates, 
as shown with the 5th measurement.

Table 2. Genetic parameters of Leaf 1 length with the rootstock from eight grape genotypes

Measurement Trait σ2
g σ2

e σ2
p H2 acc X̅

1

Sprout_1 157.90 1010.86 1168.76 0.14 0.37 52.89
Sprout_2 416.40 446.94 863.34 0.48 0.69 70.43

SD_1 0.07 0.93 1.00 0.07 0.26 4.43
SD_2 0.35 0.36 0.71 0.49 0.70 4.75

Leaf_1 0.47 37.53 38.00 0.01 0.11 12.35
Leaf_2 9.93 12.21 22.14 0.45 0.67 15.17

2

Sprout_1 152.27 1106.90 1259.17 0.12 0.35 62.73
Sprout_2 345.18 591.81 936.99 0.37 0.61 69.78

SD_1 0.24 0.52 0.76 0.32 0.56 4.48
SD_2 0.37 0.28 0.65 0.57 0.75 4.59

Leaf_1 8.07 32.08 40.15 0.20 0.45 11.54
Leaf_2 15.10 23.17 38.27 0.39 0.63 12.47

3

Sprout_1 95.52 1269.91 1365.43 0.07 0.26 60.09
Sprout_2 442.85 631.79 1074.64 0.41 0.64 68.02

SD_1 0.19 0.56 0.75 0.25 0.50 4.49
SD_2 0.51 0.37 0.88 0.58 0.76 4.62

Leaf_1 1.99 33.20 35.19 0.06 0.24 10.39
Leaf_2 3.80 35.77 39.57 0.10 0.31 10.67

4

Sprout_1 124.56 1137.88 1262.44 0.10 0.31 64.24
Sprout_2 693.18 603.33 1296.51 0.53 0.73 71.81

SD_1 0.31 0.48 0.79 0.39 0.63 4.62
SD_2 0.69 0.43 1.12 0.62 0.78 4.78

Leaf_1 0.61 32.07 32.68 0.02 0.14 10.80
Leaf_2 3.32 37.80 41.12 0.08 0.28 11.54

5

Sprout_1 201.01 1192.46 1996.51 0.50 0.71 59.85
Sprout_2 243.87 1163.33 2138.83 0.56 0.75 69.67

SD_1 0.07 1.01 1.27 0.28 0.53 4.63
SD_2 0.58 0.40 2.73 0.90 0.95 4.89

Leaf_1 0.83 36.34 39.66 0.12 0.35 10.49
Leaf_2 3.61 41.50 55.95 0.34 0.58 11.50

6

Sprout_1 100.39 1494.89 1595.28 0.06 0.25 68.19
Sprout_2 531.3 772.48 1303.78 0.41 0.64 76

SD_1 0.31 0.47 0.78 0.40 0.63 4.68
SD_2 0.62 0.43 1.05 0.59 0.77 4.92

Leaf_1 4.22 28.26 32.48 0.13 0.36 11.18
Leaf_2 4.17 36.01 40.18 0.10 0.32 12.3

7

Sprout_1 435.62 1129.7 1565.32 0.28 0.53 69.23
Sprout_2 381 898.54 1279.54 0.30 0.55 78.2

SD_1 0.13 0.61 0.74 0.18 0.42 4.69
SD_2 0.39 0.55 0.94 0.41 0.64 5.03

Leaf_1 6.38 27.91 34.29 0.19 0.43 11.38
Leaf_2 5.78 39.03 44.81 0.13 0.36 12.48

σ2
g - genetic variance among genotypes; σ2

f​ - phenotypic variance among genotypes; σ2
e - residual variance; H2 – heritability; acc – accuracy; and X̅ - mean
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Selection accuracy (acc) closely followed the H² pattern, with higher values recorded for SD_2 (up to 0.95) and lower 
values for Leaf_1 in some genotypes. According to Resende (2016), accuracy values above 0.70 reflect a high reliability 
for predicting genetic values, reinforcing the suitability of SD_2 as a robust selection criterion in grapevine breeding 
programs. These findings are consistent with previous studies reporting that traits associated with vegetative growth 
tend to exhibit a stronger genetic influence than those related to leaf structures, especially under more varied field 
conditions (Leão et al. 2018).

In this experiment, the morphometric data indirectly measured the plants’ water status and stress. As cell expansion 
is the most sensitive to water deficit (Taiz et al. 2024), reductions in stem, leaf, and shoot dimensions confirmed turgor 
limitation. Moreover, cumulative growth serves to better select drought-tolerant genotypes compared to point-based 
physiological data (Blum 2011).

From an agronomic perspective, selecting rootstocks with an increased sprout length may enhance the vigor of 
the grafted plants, contributing to improved establishment and future productivity, due to the high H2 observed here. 
Additionally, the genetic diversity detected provides a valuable basis for selecting genotypes better adapted to diverse 
edaphoclimatic conditions. These results emphasize the importance of evaluating genetic parameters at early selection 
stages, as they increase breeding efficiency and reduce the time required to develop superior cultivars or rootstocks, as 
highlighted by Cavalcante et al. (2021).

This pattern has also been described in perennial crops, such as grapevines, where epigenetic plasticity mechanisms 
and environmentally induced gene expression can lead to the differential activation of tolerance genes over time (Fortes 
and Gallusci 2017). Thus, traits evaluated at later growth stages prove to be more reliable indicators for the selection 
of drought-tolerant genotypes, corroborating previous studies that highlight the importance of long-term physiological 
resilience (Herrera et al. 2022).

The BLUP predicted value analysis revealed dynamic changes in the rankings of the genotypes throughout the 
experiment. Comparing the BLUPs before and after water depletion helps to identify more resilient cultivars, as they 
maintain their performance even under water deficit conditions. While the genotypes IAC 572 Jales, IAC 766 Campinas, 
and 110 R initially performed better under water scarcity, IAC 313 Tropical, IAC 766 Campinas, and Paulsen 1103 performed 
better overall (Figure 1). Another critical aspect is the cultivars’ recovery following water depletion. It was observed 
that genotypes IAC 101-14 and 5C not only exhibited negative BLUP estimates throughout all evaluations, but they also 
failed to recover after water restoration (7th evaluation). For these genotypes, the severity of the water deficit caused 
these genotypes to permanently wilt, irreversibly compromising their physiological functions and hindering recovery 
even after rehydration (Taiz et al. 2024). Consequently, their status worsened further relative to the other genotypes 
during this phase.

Molecular analysis
Initially, ten microsatellite loci developed by Merdinoglu et al. (2005) were evaluated for their amplification efficiency 

and informative potential for the analyzed genotypes (Ramos et al. 2025). However, three of these loci (VVIq52, VVIv37, 
and VMC1b11) amplified inconsistently, presenting issues such as missing bands or unstable patterns even after adjusting 
the conditions of the PCR (magnesium concentration, annealing temperature, and number of cycles). Consequently, 
these markers were excluded. Additionally, among the remaining loci, one (VVLN73) exhibited a monomorphic profile, 
meaning it did not show allelic variation among the analyzed genotypes and was also removed from the diversity analysis. 
Therefore, the final molecular characterization relied on six polymorphic loci.

The expected heterozygosity (He​) was high for most loci, particularly VVLP31 (0.84) and VMCF3 (0.82), indicating 
a high level of genetic diversity among the evaluated genotypes. Meanwhile, the observed heterozygosity values (Ho​) 
ranged from 0.50 (VVLP60) to 1.00 (VVLB01) (Table 3). Three loci (VMCF3, VVLP31, and VVLP60) also showed significant 
deviations from the Hardy–Weinberg equilibrium, suggesting a possible occurrence of selection effects, non-random 
crosses, or genetic structures in the studied population. This result was expected, since the analyzed genotypes are 
cultivars from breeding programs. Here, it is common to find genetic imbalances due to a narrow genetic base and low 
accumulated recombination throughout domestication and artificial selection (Barnaud et al. 2006). The fixation index 
(F) was positive in three loci, e.g., VVLP60 (F = 0.37), indicating greater homozygosity, thus representing regions that 
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are conserved across all tested materials. The other loci gave a negative F value, as in VVLH54 (F = −0.62) and VVLB01   
(F = −0.32), indicating an excess of heterozygotes.

Genetic distance between cultivars
The cultivars were subdivided into three distinct groups based on the genetic dissimilarity analysis among the genotypes, 

with genotype 5C being the most distant (Figure 2). The other four genotypes (110R, 101-14, IAC 571-6 Jundiaí, and IAC 
572 Jales) had a high similarity due to their ancestry. Both 110R and 101-14 have V. rupestris as a common ancestor, 
while both IAC 572 Jales and IAC 571-6 Jundiaí have V. caribeae as a common ancestor.

The shared ancestry of the high-performing genotypes (IAC 313 Tropical, IAC 766 Campinas, and Paulsen 1103) also 
explains their SSR marker grouping and high BLUP values. Paulsen 1103 is derived from a cross between V. berlandieri × 
V. rupestris, a combination widely recognized to endow drought tolerance mechanisms in the resulting plants (Riaz et al. 
2019). IAC 766 Campinas and IAC 313 Tropical also originate from wild species frequently associated with stress tolerance 
characteristics, notably from the tropical species V. cinerea but also from V. riparia and V. rupestris (Riaz et al. 2019).

Conversely, the genetic isolation and inferior drought performance of the 5C cultivar align with its ancestry. Its paternal 

Figure 1. BLUP response curves under drought conditions for eight grapevine rootstock genotypes.
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lineage, V. riparia, evolved in riparian habitats and lacks 
physiological adaptations required to sustain turgor under 
severe water depletion (Padgett-Johnson et al. 2003). Thus, 
the SSR-based grouping effectively separated genotypes 
based on their functional adaptive strategies rather than 
just taxonomic distance.

In conclusion, the integration of quantitative and 
molecular data in this study highlights the potential of 
rootstocks IAC 313 Tropical, IAC 766 Campinas, and Paulsen 
1103 for use in viticulture under drought conditions. The 
consistency between phenotypic performance and molecular 
grouping reinforces the reliability of this selection. However, 
to fully validate drought tolerance, further work should 
include soil-based pot trials incorporating physiological 
measurements, such as water potential (Ψw) and gas 
exchange, finally followed by field validation. Ultimately, 
these findings provide a basis for the development of 
robust selection indices, considering temporal stability and 
ancestry, contributing to the sustainability of viticulture in 
water-limited environments.
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Table 3. Genetic characteristics of seven microsatellite markers from different grapevine rootstock genotypes

SSR No. of alleles He Ho F HWE PIC
VMCF3 6 0.82 0.63 0.24 *** 0.80
VVLB01 6 0.76 1.00 -0.32 0.72
VVLH54 3 0.54 0.88 -0.62 0.45
VVLN16 4 0.70 0.63 0.10 0.64
VVLP31 9 0.84 0.63 0.25 * 0.82
VVLP60 7 0.80 0.50 0.37 ** 0.77

SSR loci with their number of alleles, observed heterozygosity (Ho), expected heterozygosity (He), Wright’s fixation index (F), significance of deviation from the Hardy-
Weinberg Equilibrium (HWE), and Polymorphism Information Content (PIC). Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 2. Genetic distances among eight grapevine rootstocks 
using seven SSR markers.
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