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Abstract: Soybean breeding in Africa is constrained by environmental hetero-
geneity and strong genotype-by-environment (G×E) interaction, which limits 
the identification of high-performing and stable genotypes. We evaluated 
145 soybean genotypes across 24 environments in seven African countries for 
grain yield (GY), number of days to maturity (NDM), 100-grain weight (W100), 
oil content (OIL), and protein content (PROT). Likelihood ratio tests indicated 
significant genotype, environment, and G×E effects for all traits. GY ranged 
from 1.404 to 3.391 kg ha⁻¹, with variation in maturity and grain composition 
associated with altitude and cropping season. Genetic correlations revealed 
important trade-offs, including positive associations among GY, NDM, and 
W100, and antagonism between OIL and PROT. Multi-trait selection with 10% 
intensity identified 14 genotypes closest to the ideotype, with expected gains 
of 15.7% in GY and favorable responses in the other traits. These findings 
demonstrate the effectiveness of multi-trait, multi-environment strategies for 
soybean improvement in Africa.
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INTRODUCTION

Soybean (Glycine max (L.) Merrill) is one of the world’s leading plant-based 
protein sources (≈40%), playing a central role in global food security and in 
supplying protein for both human consumption and animal feed (Messina 2022, 
Qin et al. 2022). The rising demand for plant-derived protein ingredients has 
intensified the need to develop cultivars that combine high yield with elevated 
protein content, thereby supporting value chains that rely on grains with greater 
nutritional and industrial value (Assefa et al. 2018). Nevertheless, breeding for 
higher protein concentration remains challenging because of the well-known 
negative correlations among protein, grain yield, and oil content, a classic trade-
off in soybean improvement (Patil et al. 2017, Taliercio et al. 2024).

Analyses of long-term datasets and extensive multi-location trials consistently 
show that high-yielding cultivars exhibit lower grain protein concentration 
(Assefa et al. 2018, Arce et al. 2025). As a result, breeding approaches that 
simultaneously improve both grain quantity and grain quality remain a strategic 
bottleneck in soybean improvement programs (Patil et al. 2017, Taliercio et 
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al. 2024). Beyond balancing yield and grain quality, soybean breeders must also contend with pronounced genotype-
by-environment (G×E) interactions, which undermine predictability and reduce the consistency of genotypes across 
locations and cropping seasons (Crossa 1990).

Evidence from multi-environment trials across major production regions demonstrates that the G×E variance 
component for yield and quality traits is substantial, particularly in tropical and subtropical environments, complicating 
the identification of broadly adapted genotypes (Obua et al. 2021, Abebe et al. 2024). In the African context, climatic 
and management heterogeneity across countries further intensifies G×E, underscoring the need for localized, tailored 
selection strategies (Araújo et al. 2025a). Consequently, well-designed multi-environment trial networks and robust 
statistical approaches to quantify G×E are essential for identifying genetic materials that combine high mean performance, 
stability, and desirable grain quality.

Linear mixed models have become the standard analytical framework for multi-environment trials, as they enable 
modeling of random effects and the explicit decomposition of G×E interactions, while providing high-precision Best 
Linear Unbiased Predictions (BLUPs) of genotypic values (Smith et al. 2005). Building on this foundation, more recent 
methodologies integrate both mean performance and stability into a single metric, facilitating selection in scenarios 
characterized by strong crossover interactions. Among these approaches, the Weighted Average Absolute Scores (WAASB) 
model combines interaction effects with BLUPs, producing a stability measure jointly associated with performance that 
has proven effective across multiple crops, including soybean (Olivoto et al. 2019a).

However, because modern soybean breeding requires simultaneous gains in yield, earliness, and grain quality, selection 
strategies must explicitly account for the antagonistic relationships among protein, oil, and yield described above. Yield, 
phenological cycle, and grain-quality attributes are tightly interconnected, combining favorable and unfavorable genetic 
correlations that can constrain the response to univariate selection. Under these conditions, multi-trait, simultaneous 
selection indices become essential tools because they integrate multiple traits into a single decision criterion, allowing 
breeders to weight traits jointly, balance gains among them, and minimize undesirable changes in correlated traits, even 
in the presence of strong G×E (Hazel 1943, Pešek and Baker 1969, Ambrósio et al. 2024, Ridara et al. 2025). Among the 
available approaches, indices such as the Multi-Trait Stability Index (MTSI) extend this framework to multi-environment 
trials by combining mean performance, stability, and the desired direction of improvement into a single ranking of 
genotypes with an overall desirable agronomic profile (Olivoto et al. 2019b).

As soybean expands into diverse regions of Africa, the Pan-African Soybean Variety Trials (PATs) provide a unique 
opportunity to evaluate a large number of genotypes under contrasting climatic and management conditions, generating 
robust information for recommending well-adapted cultivars. Despite this potential, few studies have jointly addressed 
crossover G×E, performance stability, and the simultaneous selection of grain-quality traits. In this context, combining 
linear mixed models with performance-stability metrics such as WAASB-BLUP and MTSI offers a practical strategy for 
addressing the trade-off between yield and grain quality. Therefore, the objectives of this study were to: i) select soybean 
genotypes with high performance and stability across multi-environment trials conducted in different African countries; 
and ii) identify ideotypes that harmonize yield, earliness, and grain quality, particularly protein and oil content, using 
the MTSI applied to PATs.

MATERIAL AND METHODS

Phenotypic data and field trials
Soybean genotype yield trials were sourced from the Soybean Innovation Lab (SIL) with the objective of identifying 

high-performance genotypes adapted to target population environments (TPEs) in African countries of origin, aiming 
to strengthen farmer production. This initiative led to the establishment of the PATs (Figure 1) in collaboration with the 
African Agricultural Technology Foundation, the Syngenta Foundation for Sustainable Agriculture, and the International 
Institute of Tropical Agriculture (Araújo et al. 2025b). A total of 145 soybean genotypes were evaluated for grain yield 
(GY), number of days to maturity (NDM), oil content (OIL), protein content (PROT), and 100-grain weight (W100) across 
the 2018–2021/22 growing seasons. Experiments were conducted in seven African countries: Malawi, Mali, Mozambique, 
Nigeria, Rwanda, Zambia, and Zimbabwe (Figure 2), with up to two trials per country in one or both seasons, totaling 
24 environments (Table 1). Trials were arranged as randomized complete block designs (RCBD) with three replications. 
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Each plot consisted of four 5-m rows sown at density of 25 plants m⁻¹, giving a gross area of 10 m²; the harvest area 
comprised the two central rows. Agronomic management followed location-specific best practices for soybean production.

Statistical analyses
Variance components were estimated by restricted maximum likelihood (REML; Patterson and Thompson 1971). 

Genotypic values were predicted by best linear unbiased prediction (BLUP; Henderson 1949) under the experimental 
variance–covariance structure. All analyses were conducted using ASReml-R v4.1.2 (Butler et al. 2009) and the metan 
package (Olivoto and Lúcio 2020) within the R environment (R Core Team 2025).

For single-environment analyses, the following linear mixed model was fitted:

y = μ1 + Xb + Zg + ε 

where y is the vector of phenotypic observations (n × 1); μ is the intercept; 1 is a vector of ones with dimension (n × 
1); b is the vector of fixed block effects, with incidence matrix X of dimension (n × p), where p is the number of fixed-
effect levels; g is the vector of random genotypic effects, assuming g ~ N(0,Iσ2

g), where σ2
g is the genetic variance and I 

is an identity matrix; the incidence matrix Z has dimension (n × v), with v being the number of genotypes. The residual 
errors are represented by ε ~ N(0,Iσ2

e), where σ2
e is the residual variance, with dimension n × 1. This model was fitted 

independently for each environment and trait to estimate the genetic effects under each experimental condition.

The likelihood-ratio test (LRT; Wilks 1938) was performed to test the significance of the genotype, environment, 
and G×E interaction effects:

LRT = -2(LogL ‒ LogLf) 

where L denotes the log-likelihood of the reduced model, and Lf corresponds to the log-likelihood of the whole model. 
The LRT value was compared against the Chi-square test (χ2) distribution.

Figure 1. Countries where the trials were conducted (Malawi, 
Mali, Mozambique, Nigeria, Rwanda, Zambia, and Zimbabwe) 
between the 2018/19 and 2021/22 growing seasons, evaluating 
145 soybean varieties for grain yield (GY), number of days to 
maturity (NDM), oil content (OIL), protein content (PROT), and 
100-grain weight (W100).

Figure 2. Geographic distribution of soybean experiments from 
the Pan-African Soybean Trials Network with available protein 
and oil data. The map displays the evaluated environments 
in Mali (A), Nigeria (B), Rwanda (C), Malawi, Mozambique, 
Zambia and Zimbabwe (D). Each environment, identified by a 
code from E01 to E24, represents a unique combination of trial, 
year, and season.
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For the multi-environment trial analyses, the following mixed model was used:

y = μ1n + X1 a + X2 b + Zg + ε,

where y is the (n × 1) vector of phenotypic observations; μ is the intercept; 1n is a vector of ones with dimension (n × 
1); a is the vector of fixed environmental effects (a × 1), with incidence matrix X1 of dimension (n × a); b is the vector of 
fixed block effects nested within environments (pa × 1), with incidence matrix X2 of dimension (n × p); g is the vector of 
random genotypic effects within environments, assuming g ~ MVN(0,Σg ⊗ Iv), where Σg ⊗ Iv  is the Kronecker product 
between the genetic covariance matrix among environments, with dimensions (g × g), and Iv , an identity matrix of 
order v, with v representing the number of genotypes. The incidence matrix Z has dimension (n × v). ε is the vector of 
residual errors, assumed as ε ~ MVN(0,Σε ⊗ In), where Σε ⊗ In is the Kronecker product between the residual covariance 
matrix (n × n) and In, an identity matrix of dimension (n × n). This model was fitted separately for each phenotypic trait 
evaluated (GY, NDM, OIL, PROT, and W100), allowing the estimation of genotypic effects and the G×E interaction across 
trial environments.

The broad-sense heritability was estimated as:

H2
g = σ̂2

g

σ̂2
g + σ̂2

i + σ̂2
e

  ,

where σ2
g is the genetic variance; σ2

i is the G× E interaction variance; and σ2
e is the residual variance. The environmental 

coefficient of variation (CVe) was calculated using the following formula:

CVe = ( σ̂2
e

μ ) ×100,

where µ is the overall mean for the respective trait.

We estimated the genetic correlation (rĝ) between each pair of traits as follows:

rĝ = σ̂gXY

 σ̂2
gXσ̂

2
gY

  ,

where σ̂gXY is the genetic covariance between traits X and Y; σ̂2
gX is the genetic variance of trait X; and σ̂2

gY is the genetic 
variance of trait Y.

The difference of rĝ from zero was verified using the Student’s t-test (Student 1908), at a 5% probability level.  The 
significance of the estimated genetic correlation was evaluated using Student’s t-test (Student 1908) at the 5% probability 
level. Superior genotypes were selected using the Multi-trait Selection Index (MTSI; Olivoto et al. 2019a, b), applying 
a 10% selection intensity to increase grain yield (GY), oil content (OIL), protein content (PROT), and 100-grain weight 
(W100), while reducing days to maturity (NDM). The selection index is defined as a linear combination of standardized 
trait values:

I = b1X1 + b2X2 + ⋯ + bnXn

where I is the selection index value; (X1, X2, … ,Xn) are the rescaled trait values; and (b1, b2, … ,bn) are the weights assigned 
to each trait according to the MTSI procedure. Trait interrelationships were accounted for by factor analysis, and genotype 
ranking was based on the Euclidean distance to the ideotype in the factor space. Genotypes with smaller distances to 
the ideotype were considered superior.

RESULTS AND DISCUSSION

Malawi and Zimbabwe each accounted for 37.5% of the trials, followed by Zambia with 8.33%. The remaining 16.67% 
corresponded to one environment per country in the other four countries (Table 1). Overall, 41.67% of the experiments 
were conducted during the first cropping season (April to August), whereas 58.33% were conducted during the second 
season (September to January). The first season showed a higher mean GY than the second, with a difference of 537.63 
kg ha⁻¹. For NDM, OIL, PROT, and W100, the mean values between seasons were similar.

The LRT indicated highly significant effects (p < 0.001) of genotype (G), environment (E), and the G × E interaction 
for all traits evaluated (Table 2). These results demonstrate substantial genetic variability among genotypes, strong 
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contrasts among environments, and differential genotypic responses across sites and seasons. The effect of blocks within 
environments was also significant (p < 0.05), suggesting residual within-site heterogeneity and justifying its inclusion in the 
model. The significance of the G × E component confirms the re-ranking of genotypic performance across environments, 
a pattern already reported in multi-environment soybean networks (Araújo et al. 2022, Abebe et al. 2024, Stella et al. 
2025). It supports the use of mixed models and stability metrics in subsequent selection steps.

The overall means for GY, NDM, OIL, PROT, and W100 were 2600.0 kg ha⁻¹, 97.2 days, 20.8%, 41.3%, and 17.7 g, 
respectively (Table 1). Across environments (E), GY ranged from 1404.96 kg ha⁻¹ in E03 to 3391.23 kg ha⁻¹ in E15, while 
the maturity period varied from 81 days (E11) to 127 days (E23). The observed variation is directly associated with 

Table 1. Summary of the mean values for grain yield (GY, kg·ha⁻¹), oil content (OIL, %), protein content (PROT, %), 100-grain weight 
(W100, g) and number of days to maturity (NDM, days) for 145 soybean varieties evaluated across 24 trials distributed throughout 
the African continent

Countries Environments Years Seasons
Traits

GY OIL PROT W100 NDM

Malawi

E01 2018 1 2922.34 22.05 41.03 16.54 115.43
E07 2019 1 3264.01 22.48 40.60 18.03 95.59
E08 2019 1 2869.76 20.64 40.96 18.03 126.77
E10 2019 2 1429.17 19.87 40.47 16.37 111.52
E18 2020 1 2914.89 21.44 43.25 18.93 109.18
E19 2020 1 2701.37 21.45 41.42 18.59 98.63
E20 2020 1 3296.96 21.45 41.27 18.33 127.16
E21 2021 1 2834.19 21.88 42.25 19.35 117.16
E22 2021 1 2965.99 21.16 40.95 18.22 129.25

Mali E06 2019 1 2866.67 21.03 43.92 15.18 97.18
Mozambique E11 2019 2 1791.35 19.70 41.55 16.67 81.03
Nigeria E09 2019 1 1756.79 21.27 40.71 15.75 110.36
Rwanda E02 2018 2 2058.92 20.15 42.20 13.22 131.67

Zambia
E12 2019 2 2196.59 19.90 41.06 15.44 102.56
E13 2019 2 2843.52 20.19 40.11 21.17 106.91

Zimbabwe

E03 2018 2 1404.96 22.53 38.23 16.77 133.86
E04 2018 2 1451.08 22.27 40.72 17.37 120.45
E05 2018 2 2955.90 20.92 41.59 16.04 106.17
E14 2019 2 1556.37 20.47 39.50 18.44 106.88
E15 2019 2 3391.23 19.67 41.08 17.75 123.94
E16 2019 2 3218.11 18.61 41.71 19.15 110.94
E17 2019 2 2634.28 18.66 41.64 17.11 129.04
E23 2022 2 3364.14 20.23 39.89 20.89 136.72
E24 2022 2 3314.95 18.23 43.03 15.64 131.96

Overall mean 2600.00 20.80 41.30 17.70 114.00

Table 2. Summary of the likelihood ratio test for grain yield (GY, kg·ha⁻¹), number of days to maturity (NDM, days), oil content (OIL, %), 
protein content (PROT, %), and 100-grain weight (W100, g) in 145 soybean varieties evaluated across 24 trials distributed throughout 
the African continent

Traits
LogL LRT χ2

G E G×E G E G×E G E G×E
GY -10629.44 -10810.63 -10724.75 22.79 385.16 213.40 1.81e‒06 1.99e‒67 2.48e‒48

OIL -592.15 -504.80 -558.31 325.77 151.04 258.07 8.03e‒73 8.11e‒21 4.53e‒58

PROT -1342.42 -1293.46 -1361.77 193.67 95.73 232.34 5.03e‒44 7.60e‒11 1.84e‒52

W100 -2141.15 -1991.47 -2008.83 421.14 121.78 156.50 1.37e‒93 1.98e‒15 6.58e‒36

NDM -3561.22 -3608.09 -3652.61 202.64 296.39 385.44 5.53e‒46 2.46e‒49 8.14e‒86

Likelihood Ratio Test (LRT); Log-Likelihood test (LogL); p-values from the Chi-square test (χ2); genotype effect (G), environment effect (E), and genotype × environment 
interaction (G×E).
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differences in altitude among trial sites: higher-altitude environments exhibit lower mean temperatures, which prolong 
development and increase the NDM, whereas lower altitudes shorten the cycle (Oliveira et al. 2006, Alliprandini et al. 
2009). In soybeans grown in tropical regions, this effect of altitude tends to be more pronounced than that of latitude 
(Lubis et al. 2021, Stella et al. 2025), which is consistent with the pattern observed in this study, where higher-altitude 
environments included some of the most productive sites (e.g., E15, 1341 m). In contrast, low-altitude environments 
yielded less (e.g., E03, 421 m).

Mean OIL ranged from 18.23% (E18) to 22.54% (E03), while PROT varied from 38.23% (E03) to 43.92% (E06) (Table 
1). Notably, environment E18 combined the lowest OIL with one of the highest PROT values (43.35%), indicating that 
specific environmental conditions can shift the balance between these two traits. These contrasts are consistent with 
the strong environmental influence on the genes regulating oil and protein synthesis during grain filling and maturation 
(Duan et al. 2023) and anticipate the trade-offs discussed in the genetic correlations. For W100, the values ranged from 
13.22 g (E02) to 21.18 g (E13), reflecting differences in assimilate availability during grain filling and contributing to the 
heterogeneity observed among environments.

The pattern observed between the coefficient of variation (CV) and broad-sense heritability (H2
g) was negative: more 

precise environments exhibited higher H2
g (Figure 3). GY displayed the highest and most dispersed CVs, ranging from 

9.36% to 28.45%, reflecting its intense sensitivity to environmental variation. In contrast, W100 exhibited lower CV 
values, ranging from 4.98% to 13.59%. The CVs for NDM and OIL were low, ranging from 0.23% to 6.22% and from 1.34% 
to 6.30%, respectively. PROT recorded the lowest CVs, ranging from 1.20% to 3.24%, indicating greater experimental 
precision. H2

g showed that a substantial proportion of the phenotypic variance was attributable to genetic variation 
(Table 3), a key condition for achieving efficient selection and cumulative genetic gains in breeding programs conducted 
in heterogeneous tropical environments (Pour-Aboughadareh et al. 2022).

The genetic correlation analysis revealed a moderate positive and different from zero by the Student’s t-test association 
between GY and NDM (rĝ = 0.39), indicating that higher-yielding genotypes tend to exhibit longer cycles, consistent with 
previous results in soybean (Diers et al. 2018). This pattern shows that selection based exclusively on yield tends to shift 

Figure 3. Biplot of the coefficient of variation and heritability for 24 environments for grain yield (GY, kg·ha⁻¹), number of days to 
maturity (NDM, days), oil content (OIL, %), protein content (PROT, %), and 100-grain weight (W100, g) in 145 soybean varieties evalu-
ated across 24 trials distributed throughout the African continent.
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the breeding program toward later-maturing materials, which may be undesirable in several production systems. The 
correlation between GY and OIL was positive (rĝ = 0.24) and significant, suggesting that higher-yielding genotypes tend 
to have higher oil content. Similarly, OIL showed a significant and negative correlation with PROT (rĝ = -0.36), a pattern 
widely reported in oilseed crops (Finoto et al. 2021, Jin et al. 2023, Abdelghany et al. 2025) and consistent with carbon 
competition between lipid and protein synthesis pathways during grain filling (Li et al. 2024, Mo et al. 2024).

In this work, PROT showed a negative and different from zero correlation with W100, indicating that heavier seeds 
tend to have lower protein content, corroborating observations by Wang et al. (2020) and Duan et al. (2023). In contrast, 
W100 was positively and significantly correlated with OIL (rĝ = 0.32) and with NDM (rĝ = 0.26), suggesting that larger 
seeds are associated with higher oil content and longer 
cycles (Duan et al. 2023). Finally, no linear correlations 
were detected between GY and PROT, or amid NDM and 
OIL, or between NDM and PROT (Figure 4), indicating 
relative genetic independence between these pairs of 
traits and creating opportunities for more targeted gains 
via multi-trait selection.

The observed correlation patterns among GY, NDM, 
OIL, PROT, and W100, together with strong G×E and 
environmental heterogeneity, indicate that univariate 
selection would tend to increase losses in at least one of 
the target traits. In this context, the use of a simultaneous 
index became decisive for this dataset. The MTSI was 
therefore applied to combine mean performance, stability, 
and the desired direction of response into a single metric, 
generating a ranking of the 145 genotypes according to 
their proximity to the ideotype (Figure 5) and serving as 
the basis for selecting the genotypes (Olivoto et al. 2019b).

The application of the MTSI with a selection intensity of 
10% resulted in the selection of 14 genotypes (G114, G077, 
G052, G110, G080, G142, G124, G039, G005, G058, G036, 
G143, G050, and G049) (Figure 5). These genotypes showed 
the lowest MTSI values, exhibiting greater proximity to the 
ideotype and consistently above-average performance 
across multiple environments. The expected response to 
selection indicated a 15.74% gain in GY (≈ 406.8 kg ha⁻¹) 
and a 6% reduction in NDM, corresponding to about seven 
fewer days in the cycle. For quality traits, gains were more 
modest but still positive: OIL showed a relative increase of 
2.80% (0.58 percentage point), PROT increased by 0.27% 

Table 3. Response to selection based on the Multi-trait Selection Index (MTSI) for 145 soybean genotypes evaluated across 24 
environments (2018–2021/22),  including broad-sense heritability (H2

g), environmental coefficient of variation (CVe), original population 
mean (Xo), mean of the selected lines (Xs), selection differential (SD), and predicted selection gain (SG) for grain yield (GY), number of 
days to maturity (NDM), oil content (OIL), protein content (PROT), and 100-grain weight (W100) in trials conducted in seven African 
countries

Trait H2
g CV (%) Xo Xs SD SD (%) SG SG (%)

GY 0.83 19.00 2600.00 3074.00 489.50 18.94 406.80 15.74
NDM 0.97 3.19 114.00 108.8 -7.17 -6.18 -6.95 -5.99
OIL 0.97 2.51 20.80 21.22 0.59 2.87 0.58 2.80
PROT 0.96 2.29 41.30 41.92 0.28 0.68 0.27 0.65
W100 0.97 8.60 17.70 19.36 2.27 13.30 2.22 13.01

Figure 4. Genetic correlations (Corr) among grain yield (GY, 
kg·ha⁻¹), number of days to maturity (NDM, days), oil content 
(OIL, %), protein content (PROT, %), and 100-grain weight (W100, 
g) in 145 soybean varieties evaluated across 24 trials conducted 
in the African continent. The color gradient represents the 
strength and direction of the correlations: red indicates a strong 
negative correlation (−1), white indicates no correlation (0), and 
green indicates a strong positive correlation (+1). × indicates a 
non-significant correlation at 95% confidence according to the 
Student’s t-test.
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(0.65 percentage point), and W100 increased by 13.01% (2.22 g). Taken together, these results show that it is possible 
to increase yield potential without losses in oil and protein, highlighting the essential role of multi-trait selection indices, 
such as MTSI, in reconciling grain yield and quality in soybean multi-environment trial networks. This ability to balance 
responses is one of the main advantages of multi-trait indices in large trial networks (Ambrósio et al. 2024, Ridara et 
al. 2025).

The trials conducted in seven African countries revealed substantial firm-level environmental heterogeneity and 
strong G×E interactions for yield, phenological cycle, and grain quality, underscoring the challenge of identifying stable 
genotypes in tropical and subtropical environments. The MTSI allowed the integration of multiple traits and the selection 
of a group of genotypes with consistent performance, resulting in gains greater than 15% in yield, a reduction of seven 
days in maturity, and moderate improvements in grain technological quality, highlighting G114, G077, and G052 as 
promising materials. Nevertheless, limitations such as incomplete environmental coverage, moderate genetic variability 
for protein, the negative correlation between oil and protein, and the absence of standardized environmental covariates 
restrict broader gains. As future directions, incorporating genomic prediction, envirotyping, and validation in new seasons 
is expected to increase selection accuracy, refine the definition of recommendation zones, and accelerate the delivery 
of more productive cultivars adapted to African agricultural conditions.

Figure 5. Classification of 145 soybean genotypes evaluated in 24 trials across the African continent according to the Multi-Trait 
Stability Index (MTSI). Genotypes highlighted in green and positioned above the green threshold line represent the 10% selected 
under the applied selection pressure.
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