Tissue culture efficiency of wheat species with different genomic formulas
Оlga Alikina, Mariya Chernobrovkina, Sergey Dolgov and Dmitry Miroshnichenko
Abstract: Ancient wheats are increasingly considered as valuable resources for genes of interest which could be analyzed and introduced into cultivated varieties by genetic engineering technologies. The first stage of biotechnological crop improvement consists of successful in vitro plant regeneration. Twelve wheat germplasms with different genomic formulas (AA, AABB, AAGG, AABBDD, AADDGG genomes) were examined with the use of two explant types (immature vs. mature embryos). All of the tested germplasms were able to regenerate plants, although the morphogenic ability of immature embryos was higher. The highest rate of embryogenic/regenerable structure formation was found in immature embryo cultures of tetraploid species (T. polonicum, T. turgidum, T. carthlicum, and T. dicoccum) as well as of hexaploid T. spelta. At the same time, diploid einkorn wheat (T. monococcum) and polyploid species with G chromosomes (T. timopheevii and T. kiharae) were characterized by low embryogenesis and by the presence of albino plantlets among shoots.