First Latin American off-patent corn event - Fenaltec 22

Jenny Paola Jiménez-Barreto1,2,3*, José Ever Vargas Sanchez2, Julian Mora-Oberlaender1 and Alejandro Chaparro-Giraldo1

Abstract: Genetically modified (GM) crops have been on the market for almost 27 years and since the beginning have been protected by intellectual property (IP) rights that restrict their use and commercialization by third parties. In addition, their development is typically associated with elevated costs, making their production by public research institutions extremely difficult, especially in developing countries. Nevertheless, many patents for the first generation of GM crops have already expired, and others will do so soon, opening the path to generic GM crops. Using technologies in the public domain makes it possible to deliver GM seeds adapted to the local environment at affordable prices. This paper describes the development of the first Latin American off-patent GM corn and discusses the relevant IP and regulatory issues that allowed its commercial release in Colombia. The approach exposed here can be utilized for other crops or characteristics of agronomic interest.

Keywords: Off-patent event, generic GM crops, GM crop biosafety, GM crop regulation, freedom to operate

INTRODUCTION

For more than 20 years, transgenic crops have been essential tools for improving productivity and reducing the economic and environmental costs of agriculture (Brookes and Barfoot 2020, Brookes and Barfoot 2022).

In Colombia, genetically modified (GM) corn, cotton, and blue carnation crops are cultivated. This country has developed technical capacities both for the research and development of plant biotechnology through research centers and universities and from a regulatory standpoint (Mora-Oberlaender et al. 2018). Nevertheless, until now, only one locally developed biotech crop has been released for commercialization: TC1507 off-patent corn Fenaltec 22.

One of the reasons for this situation is the elevated cost of developing a commercial biotech crop. In addition to the use of specialized facilities, such as laboratories and greenhouses, biotech crops must comply with a regulatory framework that can be very expensive. McDougall (2011) estimated the average cost for the development of a new transgenic plant event by a multinational corporation, from gene discovery to commercial liberation, at US $136 million. Nonetheless, Schiek et al. (2016) estimated the cost of the generation and commercial release of one transgenic event by a not-for-profit institution in a single country to be around US $1.4 million. Although this cost is substantially...
lower than previously reported, it is still challenging for research institutions or small–medium companies in developing countries, such as Colombia, to procure these budgets.

Another aspect that hinders the commercial release of biotech crops is the complexity of legal aspects, such as intellectual property (IP) rights, institutional agreements, and regulatory framework. For example, the Corporacion para Investigaciones Biológicas (CIB) and Universidad Nacional de Colombia developed a GM potato line, which could not be submitted to the commercial authorization process due to problems with material transfer agreements and legal agreements signed by universities and institutions involved in its development (Hincapié and Chaparro-Giraldo 2014).

Patents may also be a difficulty in developing GM crops. However, since 2015, with the expiration of the glyphosate-tolerant Roundup Ready™ soybean patents, the opportunity for a new market for generic GM crops, or agbiogenerics, has been discussed (Jefferson et al. 2015). Two approaches can generate generic GM crops: first, conventional breeding can transfer an event in the public domain to other cultivars of the same species, creating new GM varieties (or hybrids) with the same DNA insert in the same genomic locus as the original GM crop. These are referred to as off-patent events (Rüdelsheim et al. 2018). Alternatively, an entirely new event can be produced by genetically transforming a variety with expression cassettes, genes, or regulatory sequences that have been previously used but are now in the public domain, thus producing an agbiogeneric that does not necessarily have the exact same inserted sequence as prior events and may have a different insertion site in the genome.

To our knowledge, only two off-patent events have been released onto the market, both of them in the United States. The University of Arkansas released two soybean varieties with the GTS 40-3-2 event (Chen 2016, Orazaly et al. 2019), followed by the University of Missouri, which continues to produce new off-patent cultivars with the same event (Chen et al. 2020). The Farmers Business Network has also announced the first generic insect-resistant corn (Bennett 2019); however, at present, we have not been able to find its Biopesticide Registration or FDA approval.

In Colombia, the National Federation of Cereal, Legumes, and Soybean Growers (FENALCE) and the Plant Genetic Engineering Group from Universidad Nacional de Colombia have developed an off-patent corn cultivar by introducing the TC1507 event into an elite Colombian corn line (Jiménez-Barreto et al. 2016). This event confers lepidopteran resistance (Cry1F protein) and glufosinate herbicide tolerance (PAT protein). In 2019, it was granted authorization for commercial cultivation (ICA 2019). Subsequently, national authorities approved its use in feed and food (ICA 2020, INVIMA 2022), becoming the first off-patent event fully released in Latin America.

This note discusses the most relevant aspects that have allowed the commercial release of Fenaltec 22 in Colombia, which may serve as an example of the development of this type of research in other developing countries.

THE PATH TO A GENERIC GM CROP

In addition to crop breeding techniques and molecular analyses, developing an off-patent event involves managing aspects, such as IP rights and complying with the regulatory framework for biosafety. This complexity makes it necessary to analyze these aspects specifically for the country or countries of interest since regulation is specific in each jurisdiction (Parisi et al. 2013).

INTELLECTUAL PROPERTY RIGHTS

Transgenic events are covered by a network of IP rights, mainly represented by patents. Patents are specific to the country or countries in which they are issued. If a patent covering a GM event is not requested in a country and there are no other IP rights protecting it, then the event is in the public domain in that jurisdiction; consequently, it could be used without infringement of IP rights. Notwithstanding, for a genetically modified organism, other aspects such as compliance with the biosafety regulatory framework and legal access to the seeds must be considered.

In terms of IP, the first step is to perform a Freedom to Operate (FTO) analysis to identify the IP rights associated with an event in the country or countries where the event aims to be commercialized. It must cover genetic elements, such as genes, regulatory sequences, expression cassettes, and vectors, and the event itself.
In our case, an FTO analysis for Colombia was conducted for the TC1507 event (Jiménez-Barreto et al. 2016), finding no granted patents or patent applications for the country. An updated patent search for Colombia in the national database (http://sipi.sic.gov.co/) was conducted for the period between January 2017 and July 2023, where no new information related to the TC1507 event was found. Internationally, United States patents associated with genes and regulatory sequences have all expired. US patents related to the event itself have expiration dates ranging from 2024 to 2034 (US 7288643 B2, US 7417132 B2, US 7435807 B1, US 7449564 B2, US 7514544 B2, US 7989607 B2, US 8901378 B2, US 10023921 B2). These patents claim a DNA molecule that comprises the expression cassette and its flanking regions, a kit for detecting the TC1507 event, a diagnostic method for screening corn seeds, and a method for producing an insect-resistant corn plant by conventional breeding. Some of these patents were also granted in the European Union and countries including Canada, Australia, New Zealand, Brazil, Japan, Taiwan, and South Korea.

Although the oldest transgenic events have no granted patents or requests in Colombia, the number of patent requests related to plant biotechnology has increased in the last few years, probably limiting off-patent use of the most recent events. This could also be the case in other developing countries since first generation transgenic events have been patented in a few countries. Nonetheless, there are differences in the scope of patentability between countries. Thus, it is necessary to conduct a literal examination of patent claims in the jurisdiction of interest to determine the extent of the FTO. For instance, as in other Andean Community countries, Colombia does not allow patenting plants (CAN 2000), unlike the United States. Even though we have found GM crop events patented in Colombia, these patents do not claim seeds, but the GM event is indirectly protected by claiming the DNA molecule and their flanking regions in the host genome (SIC 2023).

Another aspect of consideration is the IP of the genotype, in which the introgression of the transgene is made. In countries that have signed the International Union for the Protection of New Varieties of Plants (UPOV) treaty, such as Colombia, this protection can be achieved through the Plant Breeder’s Rights.

Obtaining the GM seeds to be used as a source of the transgene must be done according to national regulations. Transgenic organisms can only be manipulated by companies or institutions that have authorization for developing activities with GMOs. If seeds were to be imported, import authorization would be required. Being cautious about these issues from the beginning of the research is fundamental for an eventual commercial release.

REGULATORY FRAMEWORK

There is a well-established regulatory framework for the biosafety of new GM crops based on the Cartagena Protocol. In short, it is mandatory to perform: i) an environmental risk assessment to obtain authorization for cultivation, ii) risk assessments for feed and food consumption, which require proving that the transgenic plant is as safe as its conventional counterpart through testing their agronomic efficiency, biological efficacy, compositional analysis, and innocuity of the newly introduced proteins (details on the regulatory framework in Colombia are described by Mora-Oberlander et al. 2018). In contrast, generic GM crops are recent, and a pathway for their commercial release has not been clear, as it is dependent on the national regulatory landscape.

One key factor in the development of an off-patent event is maintaining affordable costs for the developer. It is thus convenient to include transgenic events that have already fulfilled biosafety regulatory requirements. Although some information on biosafety may be confidential, there is also public information that can be used to assess biosafety. Today, there is enough public information that supports the biosafety of many transgenic events, especially the oldest ones. Biotech crops have been on the market for more than 26 years, and a lot of information has been produced that supports their safe use. For instance, for the TC1507 event and the Cry and PAT proteins contained in it, we found at least 19 scientific articles that accounted for their biosafety.

Our approach to complying with Colombia’s regulatory framework was to supplement our own data with publicly available information. First, we demonstrated that the off-patent event corresponds to TC1507. Molecular characterization
Crop Breeding and Applied Biotechnology - 24(2): e46582428, 2024

was performed through conventional PCR assays followed by sequencing. The entire expression cassette (6186 bp) was walked through the PCR assays. PCR products were sequenced using the Sanger method. The sequences obtained were analyzed using Chromas V 2.6.6 software and assembled into a final sequence using Bioedit V 7.0.5.3. The sequence obtained was compared with that reported for event GI: GC560390. Four nucleotide changes were found between these sequences. In silico translational analysis demonstrated that these changes did not affect the coded proteins. These differences may correspond to errors in the original reported sequence since in the more updated risk assessment of the TC1507 event (EFSA 2017), the applicant amended some nucleotides from the original sequence. Flanking regions were also amplified by PCR assays and sequenced. Overall, 1541 bp upstream and 1006 pb downstream of the event were sequenced. These nucleotide sequences matched those previously reported (Barbour et al. 2008). An enzyme-linked immunosorbent assay (ELISA) confirmed the expression of Cry1F and PAT proteins.

Field trials comparing the agronomic behavior of Fenaltec 22 with conventional and commercial transgenic corn hybrids were conducted in six natural regions in Colombia, each in four different locations. Tests that compared their agronomic efficiency and biological efficacy found that they conserve the major characteristics of the recurrent parental (non-transgenic elite line) and express glufosinate tolerance and resistance to Spodoptera frugiperda.

Risk assessment for authorization for animal and human consumption is based on the study of the possible allergenicity or toxicity of the introduced proteins. Cry and PAT proteins have been evaluated on several occasions using the weight-of-evidence approach without any indication that they could be considered allergens (Ladics et al. 2006, Randhawa et al. 2011, Dunn et al. 2017). There is also evidence proving their digestibility, thermolability, and lack of glycosylation (FSANZ 2003, EFSA 2005, Hérouet et al. 2005, US EPA 2005, Schafer et al. 2016).

Oral toxicity tests have been conducted for Cry1F and PAT proteins in mice. No effects related to Cry1F and PAT protein administration were found on body weight, necropsy, or mortality even in high doses (> 5000 mg test material/kg body weight) (FSANZ 2003, EFSA 2005, US EPA 2005).

Subchronic oral toxicity tests have been conducted on Sprague-Dawley rats (MacKenzie et al. 2007) showing no toxicologically significant differences in the variables of nutritional performance, clinical or neurobehavioral signs, ophthalmology, clinical pathology (hematology, clinical chemistry, coagulation, or urinalysis), organ weight, or gross or microscopic pathology outcomes between any pair of treatment groups. Similar results have been obtained when performing subchronic toxicity tests with stacked events containing event TC1507 (Appenzeller et al. 2009).

Although the lack of toxicity and allergenicity of Cry and PAT proteins has been proven, national authorities ask for updated bioinformatics analysis. For Fenaltec 22, Cry1F and PAT protein sequences and all possible open reading frames (ORFs) generated by the TC1507 expression cassette and its flanking regions were compared against the Allergen online V20 allergen database. The search was conducted according to the parameters suggested by the Codex Alimentarius Commission (2009). The comparison indicates that there are no significant matches between the Cry1F and PAT proteins and known allergen sequences. No significant coincidences were found between any of the putative ORFs originating from the in silico translation of the expression cassette and their flanking regions in the six reading frames and allergenic substances.

Comparison of the Cry1F and PAT protein sequences, and all possible ORFs generated by the TC1507 expression cassette and its flanking regions was also performed against a curated database of animal toxins and venom proteins (Jungo et al. 2012, UniProt Consortium 2021). No significant matches were found between the Cry1F and PAT proteins and toxin sequences. No significant matches were found between the putative ORFs and toxin sequences.

Nutritional composition equivalence between the TC1507 event and conventional corn has been demonstrated (FSANZ 2003). Additionally, a comparison of nutritional component levels of proximate analytes present in grains and forage tissues was made (Suárez et al. 2022), finding no statistically significant differences between off-patent GM and conventional maize.

Together, these results allow national authorizations for commercial release to be obtained. Fenaltec 22 is in the public domain (with no breeder’s protection or associated patents) and is commercialized at the same price as conventional corn seed, in contrast to the higher price of non-generic GM seeds. This was the result of a collaboration between a national private company, Fenalce (which associates corn producers), and a public university, Universidad Nacional
Colombia, evidencing the importance of this type of joint effort for getting research products to the market. Here, we show a complete path for the commercial release of an off-patent event according to Colombian regulations that can be used as a route for similar developments both in Colombia and other developing countries. Nonetheless, it is necessary to consider the most appropriate approach according to local regulations.

ACKNOWLEDGEMENTS

Our gratitude to the late Dr. Alejandro Chaparro-Giraldo, whose contributions and direction made the development of this research possible. We also thank FENALCE and Fondo Nacional Cerealista for their financial support and contributions.

REFERENCES

INVIMA - Instituto Nacional de vigilancia de Medicamentos y Alimentos (2022) Resolución 2022500207 del 15 de febrero de 2022. “Por la cual se autoriza el uso de maíz Fenaltect 22 como alimento o materia prima para la elaboración de alimentos para consumo humano. Bogotá.

Ladics GS, Bardina L, Cressman RF, Mattsson JL and Sampson HA (2006) Lack of cross-reactivity between the Bacillus thuringiensis derived protein Cry1F in maize grain and dust mite Der p 7 protein with human sera positive for Der p7-IgE. Regulatory Toxicology and Pharmacology 44: 136-143.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.