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Abstract: Species of the genus Cynodon are among the most cultivated forage 
crops in the world due to their high yield and nutritional quality, and its use in 
cattle feeding has been associated with gains in animal weight and increased 
milk production. The objective of this study was to model covariance structures 
in Cynodon spp. clones and study the changes in ranking of the selected geno-
types, since it is believed that affects the ranking of genotypes. A total of 202 
genotypes were evaluated in an experiment conducted in an augmented block 
design with four replications and four harvests. The genotypes were assessed for 
plant height, green weight, percentage of dry matter, and plant vigor. Nineteen 
repeated measures models with different covariance structures were tested. The 
best-fitted model adopts the CORH covariance structure for the genetic effects. 
Correct modeling of the covariance structure affected the ranking of genotypes 
in all variables evaluated.
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INTRODUCTION

Characterized by its rich genetic diversity and broad adaptation to different 
soil types, Cynodon is a genus of warm-season grasses globally distributed in 
tropical, subtropical and temperate regions (Singh et al. 2023, Soares et al. 
2023). In Brazil, Cynodon spp. have been widely used as pasture forage for 
dairy cattle. Low production cost, ease of handling, good digestibility and 
palatability combined with grazing tolerance and high response to fertilization 
make Cynodon spp. a compelling forage choice for livestock (Araújo et al. 2018, 
Baxter et al. 2022).

In Cynodon breeding programs, the phenotype of a given genotype is assessed 
through repeated measurements over the crop cycle. However, harvesting the 
same individual over time shows the existence of correlations between measures 
(Kozak and Piepho 2018, Evangelista et al. 2023).

Mixed model provides a unified longitudinal data analysis strategy that 
facilitates the treatment of correlated experimental information, heterogeneous 
variances, and unbalanced databases (Chaves et al. 2021, Evangelista et al. 
2023). Given these broad advantages, the mixed model methodology has been 
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widely applied in perennial crop breeding programs (Faveri et al. 2015, Rocha et al. 2018, Shalizi and Isik 2019, Brito da 
Silva et al. 2020, Ferreira et al. 2020, Ferreira et al. 2021, Malikouski et al. 2021, Evangelista et al. 2023). 

Multiple statistical approaches are adopted to predict effects and model the covariance structure and correlation 
between measurements. However, intermediate covariance structures may be more efficient for evaluating perennial 
crops. These structures can assume homogeneity or heterogeneity of variances and covariances between measures 
and can be applied to the several random factors in the statistical model (Mariguele et al. 2011, Faveri et al. 2015, Lara 
et al. 2019, Shalizi and Isik 2019, Evangelista et al. 2023). 

Multivariate models are the most robust for analyzing repeated measurements, considering the correlation between 
crop seasons or measurements (Mariguele et al. 2011, Faveri et al. 2015, Shalizi and Isik 2019). However, fitting the 
model becomes challenging when considering more than three measurements due to the large number of parameters 
to be estimated and the high correlations between repeated measures, resulting in non-convergence in the variance 
component estimation process (Resende 2007, Resende et al. 2014).

The appropriate modeling of variance and covariance structures and temporal correlations between repeated 
measurements is essential for obtaining more accurate predictions of genetic and non-genetic effects (Faveri et al. 2015, 
Evangelista et al. 2023). Despite the advantages of using mixed model methodologies in perennial crop breeding, there 
are few studies involving the estimation of genetic parameters and longitudinal data analysis in forage species (Rocha 
et al. 2018, Lara et al. 2019, Ferreira et al. 2020, Ferreira et al. 2021), and none with Cynodon. Since it is believed that 
the correct modeling of the covariance structure affects the ranking of elite genotypes, the objectives of this study were 
to (i) model covariance structures in Cynodon spp. clones to find the structure that best represents the data evaluated 
and (ii) study the changes in the ranking of the selected genotypes when using the simplest and the best-fitted models.

MATERIAL AND METHODS

The experiment was conducted in the experimental field of Embrapa Dairy Cattle, Valença, Rio de Janeiro, Brazil (lat 
22º 14 ‘44” S, long 43º 42’ 01” W, alt 560 m asl) in 2012 using an augmented block design with four replications. Spaced 
0.5 m meters apart, each experimental plot consisted of one plant. A total of 197 progenies from self-fertilization of 
the cultivar Grama Estrela Roxa and five commercial checks were evaluated. The five checks Florona, Porto Rico, Roxa, 
Tifton 68 and Tifton 85 were referred to as T1, T2, T3, T4 and T5, respectively. Four harvests were made to evaluate 
plant height (PH), green weight (GW), percentage of dry matter (DM) and plant vigor (PV).

Plant height (cm) was obtained from the arithmetic mean of three random measurements in each plot, measured 
from the ground level to the curve of the last fully expanded leaf. Plant green weight (kg plot-1) was assessed by cutting 
10 cm stubble height in the plots using a gasoline-powered trimmer and then the hand-harvested green biomass was 
weighed. The percentage of dry matter (%) was obtained by sampling plants from each plot, which were dried in a forced 
ventilation oven at 65 ºC for 72 hours. The samples were weighed again (dry weight) and the dry matter percentage was 
determined by the ratio between the dry weight and the fresh green weight. Phenotypic plant vigor was rated on a visual 
scale given by three evaluators, ranging from 1 to 5, where 1 indicates low plant vigor and 5 indicates high plant vigor.

The mixed model methodology (restricted maximum likelihood/best linear unbiased prediction - REML/BLUP) was 
applied to estimate the variance components and to predict genotypic values, according to Patterson and Thompson 
(1971) and Henderson and Quaas (1976), respectively. The repeatability statistical model was given by:

y = Xm + Zg + Ti + Qp + e,

where y(n x 1) is the vector of phenotypic data; m(j x 1) is the vector of the measurement-repeat combinations effects 
(assumed as fixed), added to the overall mean; g(ji x 1) is the vector of genotypic effects within measurement 
(assumed as random), g ~ NID (0, σ2

g ); i
(ij x 1) is the vector of the genotypes x measurements interactions (random), 

i ~ NID (0, σ2
gm); p(k x 1) is the vector of permanent plot effects (random), p ~ NID (0, σ2

p); and e(n x 1) is the vector of 
residuals (random), e ~ NID (0, σ2

e). σ
2
g is the genetic variance, σ2

gm is the variance of the genotypes x measurements 
interactions,σ2

p is the variance of the permanent plot effects and σ2
e is the residual variance. The capital letters  

X(n x j), Z(n x ji), T(n x ij) and Q(n x k) represent the incidence matrix for m, g, i and p effects, respectively.
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The covariance structures tested to model the residual effects were Compound Symmetry (CS), Heterogeneous 
diagonal (DIAGH), First-order autoregressive heterogeneous structure (AR1H), Second-order autoregressive heterogeneous 
structure (AR2H), Third-order autoregressive heterogeneous structure (AR3H), Power structure (PWR), Heterogeneous 
power structure (PWRH) and unstructured (US). After modeling residual effects, the permanent plot effects were 
modeled by the covariance structures of identity (IDV), DIAGH, heterogeneous correlation (CORH), AR1H, AR2H and US. 
Lastly, the genotypic effect within measurement was modeled considering DIAGH, CORH, first-order analytical factor 
(FA1) and US covariance structures. A total of nineteen repeated measures models with different covariance structures 
were tested (Table 1).

For models with the same number of fixed effects, the residual likelihoods are comparable and therefore information 
criteria based on the residual likelihood can be used (Verbyla 2019). The goodness-of-fit of the models to the data was 
tested by the Akaike information criterion (AIC) (Akaike 1974), with the lowest AIC value indicating the best-fitted model. 
To model the block effect, considering the nature of this effect as fixed or random, a modification of the AIC, proposed 
by Verbyla (2019), was adopted. 

The significance of the random effects of the best-fitted model was tested using the likelihood ratio test (LRT) (Rao 
1973). This test evaluates the contribution of random effects to the model and provides the log of convergence (L) 
and deviation for the model with and without the effect to be tested. LRT also provides the difference between the 
deviations and compares the significance of this difference using the chi-square statistic with one degree of freedom 
and 0.01 of probability level.

Phenotypic variance (σ2̂
phen) and accuracy (rg ̂g) were obtained according Resende et al. (2014):

σ2̂
phen = σ2̂

g + σ2̂
p + σ2̂

gp + σ2̂
e ,

rg ̂g =    1 − PEV
σ2̂

g

  

where σ2̂
g is the genetic variance; σ2̂

p is the variance of the permanent plot effect; σ2̂
gp is the variance of the genotypes 

x measurements interaction and σ2̂
e is the residual variance. PEV is the variance of the prediction error extracted from 

the diagonal of the generalized inverse matrix of coefficients of the mixed model equations.

The broad-sense heritability (H ̂2
c) was estimated according to Cullis et al. (2006):

H ̂2
c = 1 − PEV

2σ2̂
g

 ,

The concordance of the selected genotypes in each pair of measurements was calculated using the Kappa coefficient 
(K) (Cohen 1960), given by:

K = A – C
D – C

Where A is the number of matching selected genotypes, D is the number of selected genotypes (20) and C is the 
number of selected genotypes by chance (C = bD, and b is the selection percentage). Statistical analyses were performed 
in Rbio (Bhering 2017) and R software (R Core Team 2024) using the ASReml-R 4.1 package (Butler et al. 2017).

RESULTS AND DISCUSSION

Table 1 (models M1 and M2) shows the results obtained by the Akaike information criterion (AIC) with adaptations 
from Verbyla (2019), when considering the block effect as fixed or random, for the traits plant height (PH), green weight 
(GW), percentage of dry matter (DM) and plant vigor (PV). The AIC (Akaike 1974) is widely used to select the best-fitted 
model (Resende and Alves 2020, Evangelista et al. 2023). This criterion makes it possible to compare models with the 
same number of fixed effects, considering the maximum value of the logarithm of the likelihood function and the number 
of parameters estimated by the model. The modification of the AIC, proposed by Verbyla (2019), allows the comparison 
between models with different numbers of fixed effects. 

Verbyla (2019) proposes that by partitioning the total log-likelihood into two portions, a marginal (residual) likelihood 
and a conditional likelihood, the models evaluated become comparable even if they have a different number of fixed 
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effects. Thus, this modification made it possible to test whether the best-fitted model considers the block effect as fixed 
(M2) or as random (M1). For all the traits evaluated, the best-fitted model, according to the AIC modified by Verbyla 
(2019), was the one that considered block effect as a fixed. This choice corroborates Resende and Duarte (2007), who 
propose that if the number of blocks is less than or equal to five, it is preferable to treat this effect as fixed. Once the 
nature of the block effect had been defined as fixed, other covariance structures were tested for the other effects of 
the model, for the four traits evaluated (Table 1).

For the residual effects, the covariance structures that had the best fit were AR2H (M5) for plant height, DIAGH (M3) 
for dry matter percentage, AR1H for green weight, and AR3H for plant vigor. All these selected covariance structures 
suppose heterogeneity of variances, showing the effect of the environmental conditions on the residual effects of the 
harvests evaluated (Faveri et al. 2015). 

Heterogeneity of variances and covariances is often found for perennial crops, however, these heterogeneities are 
usually not taken into account in studies involving perennial crops (Acharya et al. 2020, Brito da Silva et al. 2020, Rodrigues 
et al. 2020). Similar results have been observed in Cynodon and other perennial forage grasses with the adoption of the 
compound symmetry structure, which assumes homogeneity of variances (Ferreira et al. 2020, Ferreira et al. 2021). 

Three out of the four traits evaluated showed an autoregressive heterogeneous structure (ARH) for the residual 
modeling (Table 1). This structure adopts a serial correlation as the component of the residual covariances between crop 
seasons and measurements. Autoregressive structures, especially AR1H, have been used in spatial analysis, considering 
that, as two individuals move away from each other, the correlation between them decreases (Andrade et al. 2020, 
Bernardeli et al. 2021). The same concept can be incorporated into studies of repeated measures over time (Faveri 
et al. 2015, Verbyla et al. 2021) since, as the interval between two measurements increases, the correlation between 
them tends to decrease, due to the environmental factors that influence the period of each harvest and the differences 
associated with the plant’s maturity stage.

The use of the Akaike information criterion was effective in selecting the model that includes the appropriate 
covariance structure for the residual effects. The effectiveness of AIC has been proven in several previous studies (Faveri 
et al. 2015, Pereira et al. 2018, Cavanaugh and Neath 2019, Melo et al. 2020, Resende and Alves 2020, Evangelista et 

Table 1. Values obtained by the Akaike information criterion (AIC) for all the models tested with the different covariance matrix 
structures and accuracy values

Models Effect COV Plant height (PH) Dry matter (DM) Green weight (GW) Plant vigor (PV)

AIC rĝg AIC rĝg AIC rĝg AIC rĝg
M1+ CS 4841.12 - 2739.84 - 12591.73 - -90.05 -
M2++

Res

CS 4779.98 0.89 2638.35 0.72 12349.57 0.59 -109.76 0.77
M3 DIAGH 4766.18 0.88 2607.73 0.70 12342.49 0.59 -155.11 0.80
M4 AR1H 4742.53 0.80 2609.46 0.70 12296.27 0.58 -281.91 0.68
M5 AR2H 4736.32 0.88 2611.45 0.71 12301.88 0.48 * -
M6 AR3H * - 2612.93 0.67 * - -285.14 0.69
M7 PWR 4766.16 0.87 2630.94 0.73 12339.60 0.59 -127.19 0.76
M10

Plot

IDV 4736.32 0.88 2607.73 0.70 12296.27 0.58 -285.14 0.69
M11 DIAGH 4740.68 0.88 * - 12236.83 0.52 * -
M12 CORH * - * - * - * -
M13 AR1H * - 2613.22 0.68 * - * -
M16

Gen

DIAGH 4762.80 0.31 2616.94 0.60 12246.50 0.41 -261.62 0.45
M17 CORH 4734.85 0.86 2607.62 0.68 12220.71 0.63 -289.50 0.73
M18 FA1 4739.04 0.88 2612.15 0.73 * - * -
M19 US 4741.74 0.83 2615.03 0.49 * - -286.13 0.76

Numbers in bold indicate the best-fitted model for each effect. COV: covariance structures; Res: residual effect; Plot: permanent plot effects; Gen: clone effect. CS: 
Compound Symmetry; DIAGH: Heterogeneous diagonal; AR1H: First-order autoregressive heterogeneous structure; AR2H: Second-order autoregressive heterogeneous 
structure; AR3H: Third-order autoregressive heterogeneous structure; PWR: Power structure; PWRH: Heterogeneous power structure; US: unstructured; IDV: identity 
covariance structure; CORH: heterogeneous correlation; FA1: first-order analytical factor. * Indicates the AIC of the models that did not converge. - Indicates the accuracy 
of the models that did not converge. M8, M9, M14 and M15 models are not shown in the table as they did not converge on any traits; +: compound symmetry model with 
block effect assumed as random; ++: compound symmetry model with block effect assumed as fixed.
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al. 2023). The best-fitted statistical model for the residual effects, identified by the lowest AIC value, was incorporated 
into the modeling of the permanent plot effect. 

When modeling the permanent plot effect, the DIAGH structure had the best fit only for green weight, while the 
best-fitted model for the other traits was determined by the IDV covariance structure (Table 1). In fact, for green weight, 
there is likely to be heterogeneity in the variation of this effect over the crop seasons in Cynodon spp. and other perennial 
crops, due to the changing biotic and abiotic conditions that influence the differential expression of this trait. The better 
fit of a structure with homogeneous variance for the permanent plot effect in other traits can be explained by the fact 
that the intensity of this effect did not vary throughout the measurements of such traits.

The modeling of genotypic effects considered the best fit for the previously modeled effects. CORH was found to be the 
covariance structure that best fitted the model for all the traits evaluated. (Table 1). This structure indicates heterogeneity 
of variance between the measures but assumes that there is a correlation between them. The most complete model is 
the Unstructured as it allows particular predictions for each measurement by considering each of them as a separate 
variable (Piepho 1997). However, this approach becomes prohibitive when the number of measurements is high (five or 
more), leading to the model not converging (Mariguele et al. 2011). As multiple measurements are taken on the same 
genotype over time, adopting this structure to explain the genotypic effect makes biological sense as it is expected to 
find a correlation between measures from the same individual.

Selecting the best-fitted model also resulted in better estimates of selective accuracy for GW when compared to the 
simplest model, which assumes homogeneous variances (Table 1). The compound symmetry model had an accuracy 
of 0.59 and, when fitted, 0.63. In contrast, the other traits showed that selective accuracy does not increase when 
the best-fitted model is selected. PH had an accuracy of 0.89 for the simplest model and 0.86 after adjustment. DM 
showed accuracy values of 0.72 and 0.68 for the compound symmetry model and the heterogeneous correlation model, 
respectively. Finally, the selective accuracy of PV was 0.77 for M2 and 0.73 for the best-fitted model.

According to Resende and Alves (2020), the accuracy parameter has the property of informing the correct arrangement 
of genotypes for selection purposes, as well as inferring the reliability of genotypic values. For PH, DM and PV, accuracy 
did not increase when the best-fitted model was adopted (Table 1), but the accuracy value was classified as high for 
the simplest model (M2), which is normally used in repeatability analyses. However, it is important to consider that the 
accuracy values found for the compound symmetry model (M2) may be overestimated as the most appropriate structure 
was not used to represent the data studied, which influences the estimation of genetic and non-genetic parameters 
used in the calculation of selective accuracy.

For GW, which had the lowest values among the traits evaluated, the selective accuracy increased from 0.59 (M2) to 
0.63 (M17) with the adoption of the best-fitted model (Table 1). For greater reliability in selecting promising genotypes, 
accuracy values above 0.70 are recommended (Resende and Alves 2020). Therefore, modeling the genetic and non-
genetic effects for GW allowed reaching values ​​closer to the recommended, and thus, together with other parameters 
that reflect reliability, selection can be conducted.

The significance of the genotypic variance was found in both the simplest model (M2) and the best-fitted model, 
which makes the selection practice valid. Considering the model selected by AIC, the best-fitted model assumes 
heterogeneous variances for almost all the effects (Table 2). The permanent plot effect was the only one that, after 
modeling, continued to adopt homogeneous variances for the PH, DM and PV traits. The fact that the permanent plot 
effect does not show heterogeneity of variances for most of the traits may be associated with the nature of this effect. As 
a genotype has constant behavior over multiple measurements, it makes sense for this variance to be constant throughout 
the measurements. GW showed heterogeneous variance for this same effect, with DIAGH as the best-fitting structure.

In general, the genotypic variance increased in most of the harvests when comparing the best-fitted model with the 
simplest model (Table 2). The genotypic variances differed across the measurements, showing that a model that adopts 
homogeneous variances, such as M2, does not represent the real nature of the data (Melo et al. 2020). In addition, 
modeling these matrices made it possible to identify the differential contribution of each effect to the phenotypic 
variance in the different harvests, which would not have been possible if only the simplest model had been considered.

The modeling of the genotypic effect was also reflected in the calculation of the average heritability, which increased 
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considerably after the fitted-model strategy (Table 2). According to the classification proposed by Resende and Alves 
(2020), heritability exhibited high magnitudes (0.50 < h2

g < 0.80) for PH and PV, indicating that the selection will be 
successful. For the DM and GW traits, even though this parameter remained in the moderate classification (0.30 < h2

g 
< 0.50), modeling these effects resulted in an important increase in heritability. Another parameter that has already 
been discussed and that supports experimental precision is high accuracy (Tables 1 and 2). The accuracy values found 
in this study are classified as high (>0.70) according to Resende and Alves (2020) for most of the traits, showing, along 
with the heritability, the reliability of selection.

The prediction of genetic values is also influenced by the model adopted and its respective covariance structures (Lara 
et al. 2019, Verbyla et al. 2021, Evangelista et al. 2023). This influence acts directly on the ranking of the best genotypes 
as well as the individuals selected in each model (Table 3). It was identified that two of the 20 selected genotypes differed 
for the PH trait according to the model adopted. This difference increases even more for the other traits evaluated, with 
four different genotypes among those selected for DM and GW and five for PV (Table 3). The differences observed in 
the group of selected genotypes are 10%, 20%, 25% and 25% for the PH, DM, GW, and PV traits, respectively.

The selection of inferior genotypes due to the use of an inadequate model can result in reduced genetic gains. 
Thus, modeling genetic and non-genetic effects represents an efficient strategy for optimizing a breeding program and 
a powerful tool for selecting the best genotypes. Differences in predicted genetic values and changes in the ranking 
of selected individuals are concerns in breeding programs due to the risk of genotypes being wrongly selected. The 
importance of modeling covariance structures is directly associated with obtaining more reliable inferences about the 
reality of the data, as well as more accurate selection within a breeding program. 

Modeling in the evaluation of different measures proved to be efficient in selecting superior individuals, similar 
to the results found in studies involving the evaluation of different crop seasons (Melo et al. 2020, Evangelista et al. 
2023). The combined use of appropriate statistical methods and high-quality phenotyping enables the selection of truly 
superior genotypes and, consequently, the optimization of a breeding program (Stringer et al. 2017, Melo et al. 2020, 
Evangelista et al. 2023).

Table 2. Variance components and coefficients of determination of the simplest model and the best model selected by AIC

Variance components Genetic parameters
Trait Model Measure σ²g σ²p σ²gp σ²e σ²phen   h²g ρ rĝg

 PH

M2 All 61.63 2.73 12.37 50.67 127.40 0.48 - 0.89

M17

1 57.74

5.77

- 78.65 142.16

0.75 0.92 0.86
2 66.69 - 63.57 130.25
3 86.30 - 28.09 114.39
4 52.10 - 49.73 101.84

 DM

M2 All 1.78 0.16 1.03 5.15 8.12 0.22 - 0.70

M17

1 2.31

0.24

- 6.50 9.05

0.47 0.67 0.68
2 1.70 - 2.74 4.68
3 5.50 - 4.76 10.50
4 1.73 - 6.29 8.26

 
GW

M2 All 315178.4 461745.32 80290.1 308302.94 1165516.7 0.27 - 0.59

M17

1 552951.8 0.073ns - 965238.0 1518189.9

0.41 0.94 0.63
2 496226.0 56754.71 - 885961.3 1438942.0
3 83988.87 269635.40 - 419604.0 773228.3
4 272850.3 55429.34 - 518646.8 846926.44

 
PV

M2 All 0.2921 0.1690 0.0434 0.1172 0.6217 0.47 - 0.77

M17

1 0.1389

0.000ns

- 0.5299 0.6688

0.54
0.91

0.73
2 0.2760 - 0.5483 0.8243
3 0.3047 - 0.2258 0.5305
4 0.2357 - 0.2247 0.4604

ns: non-significant variance component.
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According to the Kappa coefficient (K) (Cohen 1960), the concordances between the genotypes selected in pairs 
of measures for all the traits considering the best-fitted model ranged from 0.78 to 0.94. The concordances between 
the 10% best genotypes for the plant height trait in the four measures were: measure1 x measure2: 0.89; measure1 
x measure3: 0.83; measure1 x measure4: 0.89; measure2 x measure3: 0.83; measure2 x measure4: 0.83; measure3 x 
measure4: 0.94. For dry matter percentage, the concordances of the selected genotypes were measure1 x measure2: 
0.78; measure1 x measure3: 0.83; measure1 x measure4: 0.78; measure2 x measure3: 0.78; measure2 x measure4: 
0.83; measure3 x measure4: 0.83. For green weight, the concordances were measure1 x measure2: 0.83; measure1 
x measure3: 0.83; measure1 x measure4: 0.89; measure2 x measure3: 0.94; measure2 x measure4: 0.89; measure3 
x measure4: 0.89. Lastly, for plant vigor, the concordances found were measure1 x measure2: 0.94; measure1 x 
measure3: 0.78; measure1 x measure4: 0.83; measure2 x measure3: 0.78; measure2 x measure4: 0.78; measure3 x 
measure4: 0.83.

It can be inferred that selection can be carried out on any crop, as the performance of the best genotypes based 
on the average of the four measurements reveals a pattern. There were only variations in the values obtained 
for the traits evaluated in each measure, few changes in the ranking order and a high degree of concordance of 
the genotypes selected for all pairs of measurements, as evidenced by the Kappa coefficient. As there is high 
concordance of the genotypes selected in each measure, selection based on the average of the harvests for each 
trait becomes feasible. As a result, significant gains were obtained in all traits evaluated in this study. The direct 
gain for PH was 21.19% when selecting the 10% best genotypes. GW, DM and PV showed direct gains of 37.19, 
6.52 and 20.92%, respectively. 

Modeling covariance structures and identifying the best-fitted model generate more reliable results when estimating 
variance components, predicting genotypic values, and selecting superior genotypes for the traits evaluated. In addition, 
it is possible to make reliable selections based on the average of the four harvests, which can facilitate decision-making 
in Cynodon spp. breeding programs.

Table 3. Ranking of the 20 Cynodon spp. genotypes selected based on the genetic values obtained by the simplest (M2) and best-
fitted (M17) models

PH DM GW PV
M2 M17 M2 M17 M2 M17 M2 M17
96 73 76 76 T4 T4 T4 T4
73 T1 52 52 T5 T5 11 T3
T1 96 152 152 11 T3 T3 T1
171 70 57 57 T3 11 T5 11
85 40 139 139 T2 7 T2 T2
T4 T4 134 45 7 128* 118 T5
131 171 161 54 118 T2 126 193
70 85 54 134 183 35 35 118
117 117 45 161 126 118 96 183
132 132 78 122* 35 145 7 41
40 131 118 118 41* 149 183 89*
119 T2 11 168 145 126 193 123*
12 119 166* 78 159 34* 134* 159
T2 193 133 187 149 161* 41 35
51 183* 155 11 96* 159 6* 30*
67 67 17* 155 12 183 81* 7
193 162* 187 154* 165 147* 165* 117*
72* 12 168 133 9* 12 T1 126
170* 180 130* 148* 193* 81* 149* 107*
180 51 19* 103* 134* 165 159 96

*: indicates genotypes that differ in the group of those selected in the different models.
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CONCLUSION

Model 17 with heterogeneous compound symmetry (CORH) covariance structure was the best-fitted model for all 
the traits evaluated. When using the best-chosen model, the ranking of selected genotypes was changed, showing that 
this type of analysis should be used in breeding program.
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